
An Empirical Study of the Effects of Test-Suite Reduction
on Fault Localization

Yanbing Yu
yyu@cc.gatech.edu

James A. Jones
jjones@cc.gatech.edu

Mary Jean Harrold
harrold@cc.gatech.edu

College of Computing
Georgia Institute of Technology

Atlanta, GA, U.S.A.

ABSTRACT
Fault-localization techniques that utilize information about
all test cases in a test suite have been presented. These tech-
niques use various approaches to identify the likely faulty
part(s) of a program, based on information about the exe-
cution of the program with the test suite. Researchers have
begun to investigate the impact that the composition of the
test suite has on the effectiveness of these fault-localization
techniques. In this paper, we present the first experiment on
one aspect of test-suite composition—test-suite reduction.
Our experiment studies the impact of the test-suite reduc-
tion on the effectiveness of fault-localization techniques. In
our experiment, we apply 10 test-suite reduction strategies
to test suites for eight subject programs. We then mea-
sure the differences between the effectiveness of four existing
fault-localization techniques on the unreduced and reduced
test suites. We also measure the reduction in test-suite size
of the 10 test-suite reduction strategies. Our experiment
shows that fault-localization effectiveness varies depending
on the test-suite reduction strategy used, and it demon-
strates the trade-offs between test-suite reduction and fault-
localization effectiveness.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Experimentation, Reliability

Keywords
Fault localization, test-suite reduction, empirical study

1. INTRODUCTION
Debugging software after it has failed is an expensive part

of the software-development process. To determine the loca-
tion of a fault that has caused a failure, software developers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

often use manual and tedious methods. With limited di-
agnostic techniques, such as inserting print statements into
the code and using a symbolic debugger, finding the fault,
or fault localization, can often consume a significant amount
of time and resources.

To address the expense of fault localization, researchers
have proposed automated fault-localization techniques. These
techniques typically use dynamic information obtained from
executing the program to direct developer attention to likely
faulty locations, and thus, reduce the expense of the search.
Many of these fault-localization techniques use information
about the execution of a test suite of test cases for this iden-
tification (e.g., [1, 12, 13, 14]). Along with the pass/fail
results of the execution of the test suite, these techniques
are based on some type of coverage information about the
test suite’s executions. We call these coverage-based fault-
localization techniques.1 Studies show that these techniques
can be helpful in reducing the fault-localization expense by
reducing the percentage of the program that must be in-
spected to find the fault (e.g., [6, 11, 16]).

One issue related to these coverage-based fault-localization
techniques is the effect that the composition of the test suite
has on the fault localization. To date, several researchers
have begun to investigate the way in which the composition
of the test suite impacts the effectiveness of fault-localization
techniques. Two recent papers report studies of the effects
of increasing the size of the test suite used for fault localiza-
tion. Abreu and colleagues [1] randomly select test suites of
varying numbers of passed and failed test cases. For their
fault-localization technique and the subject programs and
test suites, they found that including more than six failed
test cases or more than twenty passed test cases produces
minimal effects on the effectiveness of the fault-localization
technique. However, they give no general approach for find-
ing these bounds on the passed and failed test cases. Baudry
and colleagues [4] increase the size of the test suite by se-
lectively adding test cases. They define a dynamic basic
block as a set of statements that is covered by the same test
cases. Using a test-case generator, they propose keeping test
cases that increase the number of dynamic basic blocks and
discarding test cases that do not. They found that increas-
ing the number of dynamic basic blocks increased the effec-
tiveness of the fault-localization technique. Neither of these
techniques, however, considers how removing test cases from
the test suite can affect the fault localization.

1
These techniques have also been called spectra-based because each

execution generates a spectrum for the execution.

One recent paper does consider reducing the test suite.
Hao and colleagues [7] posit that test-case similarity or re-
dundancy results in a loss of fault-localization effectiveness.
They performed an empirical study to show that injected
redundancy can impair a fault-localization technique’s effec-
tiveness. Their results suggest that reduction could improve
effectiveness. Our preliminary results contradict this result
as we found that additional redundancy does not, in general,
reduce the effectiveness of fault-localization techniques.

To address these issues of test-suite composition, we have
begun a project that will consider different methods of com-
posing test suites. In this paper, we present the results of our
first experiment on test-suite composition, in which we in-
vestigate the effects that test-suite reduction strategies have
on the effectiveness of fault-localization techniques. In the
experiment, we used 10 test-suite reduction strategies and
four existing fault-localization techniques, along with a set of
programs, containing single and multiple faults, and a large
number of test suites. Our experiment shows the trade-offs
that exist between test-suite reduction and fault-localization
effectiveness. Our experiment also shows that, in general,
existing test-suite reduction strategies reduce the effective-
ness of fault-localization techniques. In the paper, we also
propose a new test-suite reduction strategy and show that,
for our subject programs and test suites, it causes negligi-
ble impact on the effectiveness of the four fault-localization
techniques.

The main contributions of this paper are:

• The first controlled experiment (to our knowledge) that
evaluates the effectiveness of test-suite reduction on
fault-localization effectiveness, using both single- and
multiple-fault programs.

• A description of new test-suite reduction strategies,
along with empirical evidence that they maintain the
fault-localization effectiveness on the reduced test suites.

• Evidence that contradicts an existing report claiming
that redundancy in test suites is a source of error for
fault localization.

2. TECHNIQUES
In this section, we present the relevant test-suite reduction

strategies and the fault-localization techniques that we used
for our experiment.

2.1 Test-Suite Reduction

2.1.1 Test-Suite Reduction Overview
Test-suite reduction techniques identify a subset of a test

suite that maintains some characteristic of the test suite,
such as coverage. Those entities whose coverage is measured
(i.e., coverage entities) are called test-case requirements. For
example, test-case requirements could be a program’s state-
ments, branches, or system requirements. Given this set of
test-case requirements, the test-suite reduction problem can
be stated as follows [8]:

Given: Test suite TS, a set of test-case requirements r1, r2,
. . . , rn that must be satisfied to provide the desired test
coverage of the program, and subsets of TS, T1, T2, . . . ,
Tn, one associated with each of the ris such that any
one of the test cases tj belonging to Ti can be used to
test ri.

Problem: Find a representative set of test cases from TS
that satisfies all of the ris.

A test suite that satisfies all ris must contain at least one
test case from each Ti. Such a set is called a hitting set of
the Ti. Maximum reduction is achieved with the minimum-
cardinality hitting set of the Tis. Because the problem of
finding the minimum-cardinality hitting set is intractable,
test-suite reduction techniques must approximate the mini-
mum cardinality. A number of algorithms have been devel-
oped for use in test-suite reduction (e.g., [5, 8, 9, 15]).

2.1.2 Test-Suite Reduction Strategies
The test-suite reduction strategies that we use for our ex-

periment have two dimensions: (1) the test-case require-
ments used for the reduction and (2) the test set being con-
sidered in the reduction.

For the first dimension of our test-suite reduction strate-
gies, we consider two test-case requirements on which to ap-
ply the reduction: statement-based and vector-based. State-
ment-based reduction (abbreviated as S), an often-used test-
suite reduction strategy (e.g., [8]), has as its goal to produce
a reduced test suite that executes the same set of statements
as the unreduced test suite. Thus, the test-case require-
ments for this strategy are the statements in the program.
To illustrate, consider the program and test suite shown in
Figure 1. Program mid() inputs three integers and outputs
the median value of the three integers. To the right of the
code is information about a test suite of eight test cases:
inputs are shown at the top of each column, coverage is
shown by the black dots, and pass/fail status is shown at
the bottom of the columns. To the right of the test suite
are several columns that relate to fault localization; these
columns will be described in Section 2.2. For statement-
based reduction, the test-case requirements are statements
s1, s2, ..., s13, and the test suite shown covers all statements
except s12. Statement-based reduction could result in {t1,
t2, t3, t4} because this subset of the test suite also covers
all statements in the program except s12 (i.e., it satisfies the
same test-case requirements). In this case, t5, t6, t7, and
t8 provide no additional statement coverage over {t1, t2, t3,
t4}. More than one reduced test suite can satisfy the same
test-case requirements as the unreduced test suite. For our
example, test suites {t1, t2, t3, t4, t5}, {t2, t3, t4, t7}, and
{t2, t3, t4, t5, t7} are also reduced test suites that satisfy
the same test-case requirements as the unreduced test suite.

Vector-based reduction (abbreviated as V), our new test-
suite reduction strategy, has as its goal to produce a reduced
test suite that executes the same set of statement vectors as
the unreduced test suite. A statement vector is the set of
statements executed by one test case. To illustrate, consider
again the program and test suite shown in Figure 1. For
vector-based reduction, the test-case requirements are the
statement vectors in the program. Test cases t1, t7, and t8
each executes statement vector <s1, s2, s3, s4, s6, s7, s13>.
Thus, to maintain vector coverage, one of these test cases
must be in any reduced test suite. Vector-based reduction
could result in test suite {t1, t2, t3, t4, t5}. In this case,
t6, t7, and t8 provide no additional vector coverage over
{t1, t2, t3, t4, t5}. For the example, there are also other
reduced test suites, such as {t2, t3, t4, t5, t7} and {t2, t4,
t5, t6, t8}, that satisfy the same test-case requirements as
the unreduced test suite.

For the second dimension of our test-suite reduction strate-

7

7

7

3

13

2

1

13

13

13

13

13

7

7

7

7

3

13

2

1

13

13

13

13

13

7

7

7

7

3

13

2

1

13

13

13

13

13

7

 int x,y,z,m;

 mid() {

P P P

3
,3

,5

1
,2

,3

5
,5

,5

5
,3

,4

 1: read("Enter 3 numbers:",x,y,z);

 2: m = z;

 3: if (y<z)

 4: if (x<y)

 5: m = y;

 6: else if (x<z)

 7: m = y; // *** bug ***

 8: else

 9: if (x>y)

 10: m = y;

 11: else if (x>z)

 12: m = x;

 13: print("Middle number is:",m);

 } Pass/Fail Status P

t1 t2 t4 t5

7
,5

,4

t6

P F

4
,3

,5

F

2
,1

,3

t7

P

3
,2

,1

t3

0.5

0.5

0.67

0.5

0.0

0.75

0.86

0.0

0.0

0.0

0.0

0.0

0.5

co
n

fi
d

en
ce

1.0

1.0

1.0

1.0

1.0

1.0

0.5

0.5

0.33

0.17

0.0

1.0

0.17

ra
n

k

7

7

7

3

12

2

1

9

10

12

7

13

9

t8

su
sp

ic
io

u
sn

es
s

su
sp

ic
io

u
sn

es
s

ra
n

k

Tarantula SBI

ra
n

k

Jaccard

ra
n

k

Ochiai

0.25

0.25

0.25

0.4

0.0

0.5

0.67

0.0

0.0

0.0

0.0

0.0

0.25

0.25

0.25

0.25

0.4

0.0

0.5

0.67

0.0

0.0

0.0

0.0

0.0

0.25

0.5

0.5

0.5

0.63

0.0

0.71

0.82

0.0

0.0

0.0

0.0

0.0

0.5

T

su
sp

ic
io

u
sn

es
s

J O
su

sp
ic

io
u

sn
es

s

S

Test Cases

Figure 1: Example program, information about its test suite, and its rank results for the four fault-localization
techniques.

gies, we consider the subset of the test cases in the test suite
on which the reduction is performed. We apply the reduc-
tion to five types of test sets in the test suite: (1) All, (2)
Passed, (3) Failed, (4) Passed and Failed, and (5) All with
preference for failed. The first and most traditional test set
consists of all test cases in the test suite, or All. For this
test set, all test cases in the test suite are considered equally
in the reduction. The second test set consists of all passed
test cases in the test suite, or Passed. For this test set, the
reduction is performed only on the passed test cases, with no
reduction of the failed test cases. The third test set consists
of the failed test cases, or Failed. For this test set, the reduc-
tion is performed on the failed test cases, with no reduction
on the passed test cases. The fourth test set consists of the
set of passed and the set of failed test cases, or Passed and
Failed. For this test set, each group of test cases—passed and
failed—is reduced in isolation and then the reduced sets are
combined to form the reduced test suite. The fifth test set
consists of the entire test suite with preference in reduction
given to failed test cases, or All with preference for failed.
For this test set, the reduction is performed like the All ap-
proach except that whenever a passed test case and a failed
test case are equal candidates for keeping in the reduced test
suite, the failed test case is selected.

Combining the two dimensions—the test-case requirements
and the test set being considered—results in 10 test-suite
reduction strategies. The abbreviated expression and brief
description for each strategy is shown in the following.

SA: statement-based reduction on all test cases;

SP : statement-based reduction only on passed test cases;

SF : statement-based reduction only on failed test cases;

SPF : statement-based reduction on both passed and failed
test cases in isolation;

SR: statement-based reduction on all test cases with pref-
erence for failed test cases;

VA: vector-based reduction on all test cases;

VP: vector-based reduction only on passed test cases;

VF : vector-based reduction only on failed test cases;

VPF : vector-based reduction on both passed and failed test
cases in isolation;

VR: vector-based reduction on all test cases with preference
for failed test cases;

To illustrate the 10 strategies, again consider the program
and test suite in Figure 1. Table 1 shows, for each test-suite
reduction strategy, one possible reduction result.

Table 1: Test-suite Reduction Results on mid().

Strategy Reduced Test Suite.
SA {t1, t2, t3, t4}
SP {t1, t2, t3, t4, t7, t8}
SF {t1, t2, t3, t4, t5, t6, t7}
SPF {t1, t2, t3, t4, t7}
SR {t2, t3, t4, t7}
VA {t1, t2, t3, t4, t5}
VP {t1, t2, t3, t4, t5, t7, t8}
VF {t1, t2, t3, t4, t5, t6, t7}
VPF {t1, t2, t3, t4, t5, t7}
VR {t2, t3, t4, t5, t7}

2.2 Fault-Localization Techniques
Researchers have proposed a number of techniques for pro-

viding automated assistance to developers in searching for
faults. Many of these techniques use coverage information
about a test suite to identify the likely faulty part(s) of the
program (e.g., [2, 6, 12, 13, 14, 16]). This section presents
an overview of four of these coverage-based fault-localization
techniques that we used in our experiment.

2.2.1 Tarantula
In prior work [11, 12], we present one coverage-based tech-

nique called Tarantula. Tarantula assigns two metrics
to each coverage entity in the program—suspiciousness and
confidence—based on the numbers of passed and failed test
cases in a test suite that executed that coverage entity.2

Tarantula can be applied to various coverage entities, such
as branches, statements, and invariants. However, in this
discussion, we use statements as the coverage entities. The
intuition behind Tarantula’s metric for fault localization
is that statements in a program that are primarily executed

2
We use subscripts to differentiate the suspiciousness values of the

four fault-localization techniques we studied.

by failed test cases are more likely to be faulty than those
that are primarily executed by passed test cases. The sus-
piciousness of a statement s is computed by

suspiciousnessT (s) =
%failed(s)

%failed(s) + %passed(s)
(1)

In Equation 1, %failed(s) is a function that returns, as
a percentage, the ratio of the number of failed test cases
that executed s to the number of failed test cases in the test
suite. %passed(s), likewise, is a function that returns, as a
percentage, the ratio of the number of passed test cases that
executed s to the number of passed test cases in the test
suite. If the denominator in this ratio is zero, Tarantula
assigns zero suspiciousness. The suspiciousness can range
from 0, indicating that a statement is not suspicious, to 1,
indicating that a statement that is highly suspicious.

The confidence metric is meant to measure the degree
of confidence in the given suspiciousness. The Tarantula
techniques assigns a greater confidence to statements that
are covered by more test cases. The confidence of a state-
ment is computed by

confidence(s) = max(%failed(s), %passed(s)) (2)

Using suspiciousness and confidence, the Tarantula tech-
nique sorts the coverage entities of the program under test to
provide a rank for each statement. The technique first sorts
on decreasing suspiciousness, and breaks ties by next sorting
on decreasing confidence. For statements tied with the same
suspiciousness and confidence, the technique assigns them a
rank as the sum of the number of the tied statements and
the number of statements ranked before them.3 The set of
statements that have the highest rank should be considered
first by the developer when searching for the fault. If, af-
ter examining these statements, the fault is not found, the
developer can examine the remaining statements in order of
decreasing rank.

To illustrate the Tarantula technique, consider the ex-
ample in Figure 1. The Tarantula suspiciousness, confi-
dence, and resulting rank for each statement are shown in
the columns to the right of the test suite. The program
contains a fault on line 7—this line should read “m = x;”.
According the rank induced by the suspiciousness and con-
fidence, the developer would be directed first to focus atten-
tion on line 7 as it is the statement with the highest rank.

2.2.2 Statistical Bug Isolation (SBI)
Liblit and colleagues [13] proposed a similar technique,

called Statistical Bug Isolation (SBI)4 for computing
the suspiciousness of a predicate P , which they call Failure.
With the assumption that the probability of P being true
implies failure, they compute the Failure of P by

Failure(P) =
failed(P)

passed(P) + failed(P)
(3)

where passed(P) is the number of passed test cases in which
P is observed to be true and failed(P) is the number of failed
test cases in which P is observed to be true.
3
This rank computation, presented by Renieris and Reiss [16], has

been used for evaluation and comparison of fault-localization tech-

niques.
4
In recent work, the project has been renamed Collaborative Bug

Isolation (CBI).

To facilitate comparison among Tarantula, SBI, and the
other fault-localization techniques, we adapted Equation 3
to compute the suspiciousness of a statement s or Failure(s)
by considering the predicate to be whether s is executed.
In the adapted equation, passed(s) is the number of passed
test cases that executed s and failed(s) is the number of
failed test cases that executed s. We represent the Failure
as suspiciousnessS .

suspiciousnessS(s) =
failed(s)

passed(s) + failed(s)
(4)

Given the suspiciousnessS values computed for each state-
ment, the rank is computed as described in Section 2.2.1.
SBI also uses other metrics, Context and Increase. How-
ever, in this application of the technique, statement-coverage
predicates without selective sampling of predicate observa-
tions, these metrics do not influence the ranking.

To illustrate the SBI technique, again consider the exam-
ple in Figure 1. The SBI suspiciousness and ranks are shown
in columns to the right of the Tarantula results.

2.2.3 Jaccard
In recent work, Abreu and colleagues [1] compare Taran-

tula’s suspiciousness with the Jaccard metric in terms of
its diagnostic accuracy. The Jaccard index, also known
as the Jaccard similarity coefficient, is a metric used for
comparing the similarity and diversity of sample sets.

The Jaccard equation used in Reference [4] can be rep-
resented as

suspiciousnessJ(s) =
failed(s)

totalfailed + passed(s)
(5)

where passed(s) and failed(s) are the same as in Equa-
tion 4, and totalfailed is the number of failed test cases in
the test suite. Given the suspiciousnessJ values computed
for each statement, the rank is computed as described in
Section 2.2.1. Figure 1 shows the Jaccard suspiciousness
and ranks.

2.2.4 Ochiai
In recent work, Abreu and colleagues [1] also compare

Tarantula’s suspiciousness with the Ochiai coefficient,
which originated in the molecular biology domain. The
equation for Ochiai can be represented as

suspiciousnessO(s) =
failed(s)p

totalfailed ∗ (failed(s) + passed(s))
(6)

where passed(s), failed(s), and totalfailed are the same as
in Equation 5. Given the suspiciousnessO values computed
for each statement, the rank is computed as described in
Section 2.2.1. Figure 1 shows the Ochiai suspiciousness
and ranks.

3. EXPERIMENT
To understand the impact of various types of test-suite

reduction strategies on fault localization, we conducted an
experiment. In this section, we first describe the studied
variables and measures. We then describe the objects for
analysis. Finally, we discuss the details of our experimental
setup.

3.1 Variables and Measures
Our primary objective was to investigate the effects of var-

ious test-suite reduction strategies on fault-localization ef-
fectiveness. Our experiment manipulated two independent
variables: the test-suite reduction strategy used to reduce
the test suites and the fault-localization technique used to
rank the statements in the subject programs. The reduc-
tion strategies were described in Section 2.1.2 and the fault-
localization techniques were described in Section 2.2. In all,
we experimented using 10 test-suite reduction strategies and
four fault-localization techniques, resulting in 40 pairings.

For each pairing of a test-suite reduction strategy and
a fault-localization technique, we measured two dependent
variables: the percentage reduction in the test-suite size and
the increase in expense of fault localization. The percentage
reduction in test-suite size is measured by calculating the
ratio of the size of the reduced test suite to its unreduced
test suite. This metric, which we call Reduction, is computed
by the following equation.

Reduction =

„
1− size of reduced test suite

size of unreduced test suite

«
∗ 100 (7)

The effectiveness of the fault-localization technique is mea-
sured by the percentage of the program that must be exam-
ined to find the fault if using the prescribed rank given by
the fault-localization technique. This metric, which we call
Expense, is computed by the following equation.

Expense =
rank of faulty statement

number of executable statements
∗ 100 (8)

An equivalent metric was originally presented by Renieris
and Reiss [16] and used by many other researchers (e.g., [6,
11, 14]. For programs that contained multiple faults, we
calculated the Expense for the first fault to be found as this
would relate to the first fault that the developer would begin
fixing.

To study the effects of test-suite reduction on fault lo-
calization, we compute the Expense increase, which is the
difference between the Expense computed on the reduced
test suite and the Expense computed on the unreduced test
suite, where a positive Expense increase means the reduc-
tion hurts fault localization while a negative Expense in-
crease means the reduction benefits fault localization. Using
the Expense increase (which is a percentage of the program)
allows us to normalize the reduction effects on programs of
different sizes.

3.2 Objects for Analysis
We used eight C programs as the objects of analysis (see

Table 2). Each program has a variety of versions, each con-
taining one fault. Each program also has a large universe of
inputs. We used these C programs because they have been
used in many previous fault-localization studies (e.g., [1, 6,
11, 14]). Programs print_tokens, print_tokens2, replace,
schedule, schedule2, tcas, and tot_info, along with their
versions and inputs, were assembled at Siemens Corporate
Research for a study of the fault-detection capabilities of
control-flow and data-flow coverage criteria [10]. The space

program was developed by the European Space Agency. A
test suite for space was constructed from 10,000 test cases
generated randomly by Vokolos and Frankl [17] and 3,585

Table 2: Objects of Analysis.

Faulty Test
Program Versions LOC Cases Description
print tokens 7 472 4056 lexical analyzer
print tokens2 10 399 4071 lexical analyzer
replace 32 512 5542 pattern replacement
schedule 9 292 2650 priority scheduler
schedule2 10 301 2680 priority scheduler
space 58 6218 13585 array definition interpreter
tcas 41 141 1578 altitude separation
tot info 23 440 1054 information measure

test cases created by researchers in the Aristotle Research
Group [3]. Each version of the Siemens programs and each
original version of the space program contains exactly one
fault, although the faults may span multiple statements or
even functions. In addition to the single-fault versions, we
randomly generated 10 2-fault versions and 10 3-fault ver-
sions for the space program by injecting the faults from its
original versions into the version that is deemed to have no
faults—the correct version.

Combined, there are 190 faulty versions. Of these ver-
sions, we were able to use 169 versions. Two versions—
versions 4 and 6 of print_tokens—contained no syntactic
differences from the correct version of the program in the
C file—there were only differences in a header file. In eight
versions—version 32 of replace, version 9 of schedule2,
and versions 1, 2, 3, 12, 32 and 34 of space—no test cases
fail, thus the fault was never manifested. In 11 versions—
version 10 of print_token2, version 27 of replace, versions
5, 6, and 9 of schedule, and versions 25, 26, 30, 35, 36,
and 38 of space—test cases failed because of a segmenta-
tion fault. Thus, we were unable to use these 11 versions
for our experiment. After removing the 21 versions, we were
left with the 169 versions.

3.3 Experimental Setup
We applied the 10 test-suite reduction strategies and the

four fault-localization techniques to the 169 versions of our
programs and their test suites. This section describes the
way in which we set up the experiment to apply the test-
suite reduction strategies and the fault-localization tech-
niques that we used.

We used three steps to set up the experiment. First,
to simulate realistically-sized test suites for these programs
and to experiment with test suites of different composition,
for each of the 169 versions, we randomly generated 10
test suites of different sizes containing from 50 test cases
to 500 test cases by increasing the test suite size by 50
test cases each time. This process created 1, 690 (169 ∗
10) test suites with sizes ranging from 50 to 500. To pro-
vide an average over many test suites, we repeated the first
step 100 times, which created 169, 000 (1, 690 ∗ 100) test
suites. We used these 169, 000 test suites as the unreduced
test suites. Second, we applied the 10 reduction strategies
from Section 2.1.2 to the unreduced test suites. This gave
us 1, 690, 000 (169, 000 ∗ 10) reduced test suites. Includ-
ing the 169, 000 unreduced test suites with the 1, 690, 000
reduced test suites resulted in 1, 859, 000 test suites of dif-
ferent sizes. Third, we applied the four fault-localization
techniques to the 1, 859, 000 test suites and recorded the
7, 436, 000 (1, 859, 000 ∗ 4) fault-localization results for the
analysis.

3.3.1 Generating Unreduced Test Suites
Each version of the subject programs that we used has a

large test pool. We used its entire test pool as the input
and applied the following process to randomly generate the
unreduced test suites.

1. We randomly selected one failed test case from the test
pool to ensure that the generated test suite has at least
one failed test case.

2. We randomly selected one test case from the test pool
(without considering its pass/fail status) and repeated
this process until we got the desired number (e.g.,
50, 100, . . .) of test cases in the test suites. Each time
one test case was selected, we marked it so that it was
not selected again.

3.3.2 Applying Reduction Strategies
For each of the 169, 000 unreduced test suites, we used

the following process to apply the five statement-based re-
duction strategies.

1. We marked all statements as “uncovered” and all test
cases as “unselected.”

2. For each“unselected”test case, we calculated the num-
ber of “uncovered” statements that it covered.

3. We marked the first (if there was more than one) test
case encountered that covered the maximum number of
statements as“selected,” and we marked all statements
it covered as “covered.”5

4. We repeated Steps 1-3 until there were no remaining
“uncovered” statements covered by any “unselected”
test cases.

5. We considered all “selected” test cases as members of
the reduced test suite.

Similarly, for each of the 169, 000 unreduced test suite,
we used the following process to apply the five vector-based
reduction strategies.

1. We iterated over the test cases in the test suite, check-
ing, for each test case, whether we have already en-
countered this exact set of statements (or vector) cov-
ered by another test case. If we have not encountered
it before, we created a bin for it and placed that test
case in that bin. If we have encountered it before, we
placed the test case in the matching bin.

2. We randomly selected one test case from each bin. The
test cases that were selected comprised the reduced
test suite.

Specially, for the strategies SA and V A, we randomly
selected one failed test case first to ensure that the reduced
test suite has at least one failed test case. Otherwise, fault-
localization may not be needed or applied.

4. DATA AND ANALYSIS
In this section, we describe the results of our experiment,

summarize and explain the data, and discuss threats to the
validity of the experiment and how we addressed them.

5
This is equivalent to randomly selecting one test case because the

test suites we used were randomly generated from Section 3.3.1.

4.1 Experimental Results
We organize the presentation of the experimental results

in the following way. We first examine the effects of all 10
test-suite reduction strategies on one of the fault-localization
techniques—Tarantula. Section 4.1.1 presents the results
of the way in which applying each of the 10 test-suite reduc-
tion strategies affects Tarantula’s fault-localization effec-
tiveness. We next present the reduction achieved by each
of the 10 test-suite reduction techniques. These results are
important because they show that the sizes of the reduced
and unreduced test suites differ. Section 4.1.2 presents these
test-suite reduction results. Based on the results of Sec-
tions 4.1.1 and 4.1.2, we chose two reduction strategies that
are representative of the others, and present their effects on
each of the four fault-localization techniques. Section 4.1.3
presents these results. Finally, in Section 4.1.4, we show the
size reduction of the test suites by the two representative
reduction strategies for each of the subject programs.

4.1.1 Expense Increase on Tarantula

Table 3 shows the increase in Expense of using the Taran-
tula fault-localization technique on all 10 test-suite reduc-
tion strategies for the eight single-fault programs. In the
table, rows represent the subject programs and columns rep-
resent the test-suite reduction strategies using their abbre-
viations. Each entry in the table represents the mean of
the Expense (see Equation 8) increase over the base Ex-
pense computed on the unreduced test suite. The mean
is computed over all versions of the program, over all 100
iterations, and over all 10 differently-sized test suites. For
example, for replace, the mean increase in expense over the
unreduced test suite for test-suite reduction strategy SP is
3.958. The last row in the table is a summary aggregation
over all versions, and is computed as the mean over all ver-
sions of all of the programs, over all 100 iterations, and over
all 10 differently-sized test suites.

The table shows that all statement-based reduction strate-
gies incur a greater expense increase than the vector-based
strategies. Although there are a few exceptions using the SP
strategy, the overwhelming trend is that these statement-
based reduction strategies cause an increase in the expense.
This means that, for our subject programs, if a test suite is
reduced using statement-based strategies, the fault-localization
technique will almost always perform worse. Among the
statement-based reduction strategies, for the subjects we
studied, reducing on all test cases with preference for failed
(SR) causes the greatest increase in fault-localization ex-
pense, and reducing on all failed test cases (SF) causes the
least increase in expense. Among the vector-based reduc-
tion strategies, reducing on any of the unreduced test suites
shows a negligible impact on the fault-localization expense.
This means that, for our subject programs, if a test suite is
reduced using vector-based strategies, the fault-localization
technique will almost always perform the same. We also see
that for vector-based strategies, reducing on the failed test
cases (VF) incurs the greatest increase on average and re-
ducing on all test cases with preference for failed (VR) causes
the least increase in the fault-localization expense. In fact,
on many versions and programs, and overall, reducing based
on the VR strategy causes a decrease in the fault-localization
techniques’ expense, although we note that this decrease is
small and not always present.

Table 3: Mean Increase in Fault-localization Expense using Tarantula on Reduced Test Suites.
SA SP SF SPF SR VA VP VF VPF VR

print tokens 4.934 1.707 1.418 3.257 9.824 0.062 -0.024 0.077 0.038 0.031
print tokens2 4.597 -0.397 1.047 1.288 12.674 -0.408 -0.435 0.005 -0.433 -0.452

replace 4.747 3.958 0.330 4.339 12.344 0.310 0.287 0.011 0.298 0.296
schedule 8.805 7.573 0.256 9.563 16.367 -0.367 -0.044 -0.387 -0.369 -0.356
schedule2 6.081 5.423 1.282 6.738 7.429 0.600 0.791 -0.071 0.728 0.739

space 0.024 -0.243 0.313 -0.038 1.265 -0.005 -0.014 0.014 0.000 -0.010
tcas 6.854 7.127 0.225 7.047 9.014 0.019 -0.037 0.182 0.071 0.072

tot info 4.895 1.656 1.252 3.117 6.043 -1.075 -0.828 -0.056 -1.203 -1.222
Summary 4.767 3.637 0.575 4.266 8.322 -0.100 -0.063 0.029 -0.102 -0.107

Table 4: Mean Percentage of Test-Suite Size Reduction using the 10 Reduction Strategies.
SA SP SF SPF SR VA VP VF VPF VR

print tokens 96.654 94.904 0.813 95.717 96.804 24.330 24.265 0.045 24.310 24.330
print tokens2 97.123 91.018 4.540 95.558 97.369 28.006 27.562 0.300 27.861 28.006

replace 94.426 92.310 1.177 93.488 94.666 25.939 25.594 0.262 25.856 25.939
schedule 97.657 92.848 4.388 97.235 97.863 54.678 50.353 2.920 53.272 54.678
schedule2 97.495 96.046 0.925 96.970 97.796 35.702 35.363 0.166 35.529 35.702

space 70.286 55.622 12.443 68.066 70.388 12.010 3.843 8.148 11.991 12.010
tcas 97.728 94.840 2.146 96.986 97.749 95.100 92.402 2.114 94.516 95.100

tot info 97.043 88.273 7.023 95.296 97.063 68.241 64.054 3.438 67.493 68.241
Summary 92.079 86.238 4.617 90.855 92.201 50.887 47.780 2.734 50.514 50.887

4.1.2 Percentage Reduction
Table 4 shows the percentage reduction in the size of the

test suite using each of the 10 test-suite reduction strate-
gies. Like Table 3, rows represent the subject programs and
columns represent the test-suite reduction strategies using
their abbreviations. Each entry in the table is the mean
of the percentage reduction of the test suite from the unre-
duced test suite using the indicated strategy. For example,
for replace, the mean reduction of 92.310% is achieved on
the unreduced test suite by test-suite reduction strategy SP ;
this means that the reduced test suite is only 7.690% of the
unreduced test suite. Each mean is computed over all faulty
versions of the program, over all 100 iterations, and over
all 10 differently-sized test suites. The last row in the table
is a summary, and is computed as the mean over all ver-
sions of all programs, over all 100 iterations, and over all 10
differently-sized test suites.

From the table, we can see that most statement-based re-
duction strategies provide more reduction than the vector-
based strategies. On average, the statement-based reduc-
tion strategies provide about a 90% reduction in the test-
suite size, and the vector-based reduction strategies pro-
vided about a 50% reduction in the test-suite size. One
exception occurs for both statement-based and vector-based
reduction when they are applied to the failed test base: the
statement-based reduction strategy applied to only failed
test cases (SF) provides only about 5% reduction, and the
vector-based reduction strategy applied to only failed test
cases (VF) provides only about 3% reduction. This small
reduction occurs because, in general, these test suites con-
tain many more passed test cases than failed test cases, and
thus, less reduction is achieved when reducing only on these
relatively few failed test cases. Additionally, vector-based
reduction strategies provides only about 10% reduction on
space because, on average, about 60% of the 13585 test cases
generate unique statement vectors. When we randomly sam-
pled these test cases to create the relatively small unreduced
test suites (≤ 500 test cases), a high percentage of the test
cases in these suites had unique vectors.

4.1.3 Expense Increase on All Fault-localization Tech-
niques

To evaluate and compare the effects of test-suite reduc-
tion on all four fault-localization techniques discussed in
Section 2, we present the results of each fault-localization
technique on two strategies: statement-based reduction on
all test cases (SA) and vector-based reduction on all test
cases (VA).

Figure 2 shows these results. We present the data using
10 boxplot6 charts. Figure 2 shows the charts for each of
the subject programs. Each boxplot column shows a fault-
localization technique applied to a reduced test suite pro-
duced by either statement-based reduction or vector-based
reduction. The fault-localization techniques are abbreviated
as such: T for Tarantula, S for Statistical Bug Isolation, J
for Jaccard, and O for Ochiai.

This data shows that, for our subject programs, these test-
suite reduction strategies have a similar effect on all four
fault-localization techniques for each subject program. The
data also shows that the statement-based reduction strategy
clearly produces both a greater increase in fault-localization
expense and greater variability in those increases over the
vector-based strategy. Whereas the boxplots for SA are gen-
erally raised and wide, the boxplots for VA are centered at
zero and narrow.

4.1.4 Size Results
Figure 3 shows the percentage reduction for each test-suite

reduction strategy on each subject program as two boxplot
charts. The left chart shows the results for the SA strategy
and the right chart shows the results for the VA strategy.
The vertical axis for these charts represents the percentage
of test-suite size reduction for each program and reduction
strategy. The figure shows that the statement-based reduc-

6
A boxplot is a standard statistical device for representing data sets.

In these boxplots, each data set’s distribution is represented by a box.

The box’s height spans the central 50% of the data and its upper

and lower ends mark the upper and lower quartiles. The middle of

the three horizontal lines within the box represents the median. The

vertical lines attached to the box indicate the tails of the distribution.

T(SA) T(VA) S(SA) S(VA) J(SA) J(VA) O(SA) O(VA)

-10

0

10

20

30
E
x
p
e
n
se

 I
n
cr

e
a
se

print_tokens

T(SA) T(VA) S(SA) S(VA) J(SA) J(VA) O(SA) O(VA)

-10

0

10

20

30

E
x
p
e
n
se

 I
n
cr

e
a
se

print_tokens2

T(SA) T(VA) S(SA) S(VA) J(SA) J(VA) O(SA) O(VA)

-10

0

10

20

30

E
x
p
e
n
se

 I
n
cr

e
a
se

replace

T(SA) T(VA) S(SA) S(VA) J(SA) J(VA) O(SA) O(VA)

-10

0

10

20

30

E
x
p
e
n
se

 I
n
cr

e
a
se

schedule

T(SA) T(VA) S(SA) S(VA) J(SA) J(VA) O(SA) O(VA)

-10

0

10

20

30

E
x
p
e
n
se

 I
n
cr

e
a
se

schedule2

T(SA) T(VA) S(SA) S(VA) J(SA) J(VA) O(SA) O(VA)

-10

0

10

20

30

E
x
p
e
n
se

 I
n
cr

e
a
se

tcas

T(SA) T(VA) S(SA) S(VA) J(SA) J(VA) O(SA) O(VA)

-10

0

10

20

30

E
x
p
e
n
se

 I
n
cr

e
a
se

tot_info

T(SA) T(VA) S(SA) S(VA) J(SA) J(VA) O(SA) O(VA)

-10

0

10

20

30

E
x
p
e
n
se

 I
n
cr

e
a
se

space

T(SA) T(VA) S(SA) S(VA) J(SA) J(VA) O(SA) O(VA)

-10

0

10

20

30

E
x
p
e
n
se

 I
n
cr

e
a
se

space-2faults

T(SA) T(VA) S(SA) S(VA) J(SA) J(VA) O(SA) O(VA)

-10

0

10

20

30

E
x
p
e
n
se

 I
n
cr

e
a
se

space-3faults

Figure 2: Expense increase for the statement-based reduction (SA) and the vector-based reduction (VA).

prin
t_t

okens

prin
t_t

okens2
replace

sch
edule

sch
edule2

tca
s

tot_i
nfo space

space
-2faults

space
-3faults

0

20

40

60

80

100

%
 R

e
d
u
ct

io
n

Size SA

prin
t_t

okens

prin
t_t

okens2
replace

sch
edule

sch
edule2

tca
s

tot_i
nfo space

space
-2faults

space
-3faults

0

20

40

60

80

100

%
 R

e
d
u
ct

io
n

Size VA

Figure 3: Percentage of test-suite size reduction for statement-based reduction (SA) and vector-based reduc-
tion (VA).

tion strategy provides a much greater and more consistent
reduction than the vector-based reduction strategy.

4.2 Discussion
In this section, we summarize and provide some observa-

tions about the results that we obtained.
The data demonstrate a trade-off between the test-suite

reduction that is achieved and the effectiveness of the fault
localization. The statement-based reduction strategy pro-
vides much greater reduction of the test suites but in general
negatively affects the effectiveness of the fault-localization
techniques. The vector-based reduction provided less reduc-
tion in test-suite size, but provides negligible impact on the
effectiveness of the fault-localization techniques. These re-
sults hold for all four fault-localization techniques.

In their study, Hao and colleagues [7] found that test-
case redundancy can negatively affect fault localization. Our
studies provide a more thorough experiment with the goal of
of investigating whether removing redundancy from the test
suite improves the effectiveness of fault-localization tech-
niques, as they proposed. Our evaluation does not support
their finding that redundancy is a major source of fault-
localization error. Although we observed that occasionally
the fault localization improves by removing redundancy, the
improvement is small and unpredictable.

Given that our experiment shows that, for our subjects,
elimination of test-suite redundancy generally negatively im-
pacts effectiveness of fault localization, we were interested
in whether it is possible to retain fault-localization effective-
ness, with negligible impact, while saving testing costs. We
observed that usually traditional, statement-based reduction
can save testing expense, but it comes at the cost of effective-
ness of fault localization. We investigated a stricter reduc-
tion criterion—vector-based—and showed that in general,
for our subject programs, testing expense could be reduced
with negligible effects on fault-localization effectiveness.

Because of the trade-off between reduction and fault-local-
ization effectiveness, we recommend that developers utilize
the reduction strategy according to the time that can be allo-
cated to testing. If testing time is limited, testing cost is very
high, or developer time is inexpensive, the statement-based
reduction strategy may be most appropriate. If developer
time is most important, the vector-based reduction strategy

may be most appropriate. Additionally, if testing cost is in-
expensive, then the entire test suite may be run to provide
the fault-localization technique with the most information.

4.3 Threats to Validity
Threats to internal validity arise when factors affect the

dependent variables without the researchers’ knowledge. It
is possible that some implementation flaws could have af-
fected the results. However, we are confident in the accu-
racy of the results, given that we implemented four fault-
localization techniques and 10 test-suite reduction strate-
gies, and the results were consistent among them.

Threats to external validity arise when the results of the
experiment are unable to be generalized to other situations.
In this experiment, we evaluated the effects of test suite re-
duction on fault localization using only eight programs, and
thus, we are unable to definitively state that our findings
will hold for programs in general. We attempted to address
some of these uncertainties by performing our evaluation on
a variety of programs of varying size. For each subject pro-
gram, we performed our evaluation on varying sizes of test
suites, many different faults, and many randomly chosen test
suites. We also performed evaluation on a varying number
of faults for one of the programs to demonstrate how this
factor affects the results. In addition, we implemented and
evaluated the effects on four fault localization techniques.

Threats to construct validity arise when the metrics used
for evaluation do not accurately capture the concepts that
they are meant to evaluate. In our case, we measure the
effectiveness of the fault localization techniques using the
Expense measure that shows the percent of the code that
must be examined to find the fault. The metric assumes
that the developer will inspect the program, statement by
statement, in the prescribed order until reaching the fault,
and that she will be able to recognize that it is faulty. While
this may not be a realistic debugging process, we believe that
it is a reasonable approximation of relative effectiveness of
the fault localization technique. For example, a technique
that identifies the fault as the most suspicious statement
will likely provide the developer with a better hint than an-
other technique that marks the fault as the least suspicious
statement.

5. SUMMARY AND CONCLUSIONS
Testing and debugging costs often dominate the software

development process, and thus, researchers have proposed
test-suite reduction techniques and fault-localization tech-
niques to address each of these sources of expense. How-
ever, to date, there has been little investigation of how these
two cost-saving techniques affect each other. In this pa-
per, we provide the first investigation of the effects of test-
suite reduction on fault-localization effectiveness. We evalu-
ated several test-suite reduction strategies on multiple fault-
localization techniques, and proposed new reduction strate-
gies that help to leverage the trade-offs between reduction
and localization effectiveness. We found that traditional
statement-based reduction negatively affects the fault local-
ization, whereas vector-based reduction provides negligible
affects on the effects of fault localization. Moreover, occa-
sionally the vector-based reduction allows for an improve-
ment for the fault localization techniques.

Although our evaluation clearly demonstrates a trade-off
between reduction and fault-localization effectiveness for our
subject programs, more experimentation must be conducted
to verify the effects in general. Specifically, we are plan-
ning experiments on larger programs. We also plan to ex-
periment with other reduction strategies that reduce with
respect to other coverage criteria such as branches, data-
flows, and paths. We also would like to explore strategies
that are more strict than the statement-based reduction but
less strict than the vector-based reduction to provide more
alternatives in the trade-off between reduction and fault-
localization effectiveness.

6. ACKNOWLEDGEMENTS
This work was supported in part by National Science

Foundation awards under CCR-0205422, CCF-0429117, and
CCF-0541049 to Georgia Tech. The anonymous reviewers
provided many helpful suggestions to improve the paper.

7. REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the

accuracy of spectrum-based fault localization. In Testing:

Academic and Industrial Conference, Practice and

Research Techniques, Windsor, UK, September 2007.

[2] H. Agrawal, J. Horgan, S. London, and W. Wong. Fault

localization using execution slices and dataflow tests. In

Proceedings of IEEE Software Reliability Engineering,

pages 143–151, 1995.

[3] Aristotle Research Group. Aristotle analysis system,

2007. http://www.cc.gatech.edu/aristotle/.

[4] B. Baudrey, F. Fleurey, and Y. L. Traon. Improving test

suites for efficient fault localization. In International

Conference on Software Engineering, pages 82–91,

Shanghai, China, May 2006.

[5] T. Y. Chen and M. F. Lau. Dividing strategies for the

optimization of a test suite. Information Processing Letters,

60(3):135–141, Mar. 1996.

[6] H. Cleve and A. Zeller. Locating causes of program failures.

In Proceedings of the International Conference on Software

Engineering, pages 342–351, St. Louis, Missouri, May 2005.

[7] D. Hao, Y. Pan, L. Zhang, W. Zhao, H. Mei, and J. Sun. A

similarity-aware approach to testing based fault

localization. In Proceedings of the Conference on

Automated Software Engineering, pages 291–294,

November 2005.

[8] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology

for controlling the size of a test suite. ACM Transactions

on Software Engineering and Methodology, 2(3):270–285,

July 1993.

[9] J. R. Horgan and S. A. London. ATAC: A data flow

coverage testing tool for C. In Proceedings of the Symp. on

Assessment of Quality Software Development Tools, pages

2–10, May 1992.

[10] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.

Experiments on the effectiveness of dataflow- and

controlflow-based test adequacy criteria. In Proceedings of

the International Conference on Software Engineering,

pages 191–200, May 1994.

[11] J. Jones and M. J. Harrold. Empirical evaluation of the

tarantula automatic fault-localization technique. In

Proceedings of the International Conference on Automated

Software Engineering, pages 273–282, November 2005.

[12] J. Jones, M. J. Harrold, and J. Stasko. Visualization of test

information to assist fault localization. In Proceedings of

the International Conference on Software Engineering,

pages 467–477, Orlando, Florida, May 2002.

[13] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.

Jordan. Scalable statistical bug isolation. In Proceedings of

the conference on Programming language design and

implementation, pages 15–26, 2005.

[14] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER:

statistical model-based bug localization. In Proceedings of

European Software Engineering Conference and

Foundations on Software Engineering, pages 286–295,

September 2005.

[15] J. Offutt, J. Pan, and J. M. Voas. Procedures for reducing

the size of coverage-based test sets. In Proceedings of the

International Conference on Testing Comp. Software,

pages 111–123, June 1995.

[16] M. Renieris and S. Reiss. Fault localization with nearest

neighbor queries. In Proceedings of the International

Conference on Automated Software Engineering, pages

30–39, Montreal, Quebec, October 2003.

[17] F. Vokolos and P. Frankl. Empirical evaluation of the

textual differencing regression testing techniques. In

Proceedings of the International Conference on Software

Maintenance, November 1998.

