Chronos: Visualizing Slices of Source-Code History

Francisco Servant and James A. Jones
Department of Informatics
University of California, Irvine, USA
{fservant, jajones}@uci.edu

Abstract—In this paper, we present CHRONOS—a tool that
enables the querying, exploration, and discovery of histori-
cal change events to source code. Unlike traditional Revision-
Control-System tools, CHRONOS allows queries across any subset
of the code, down to the line-level, which can potentially be
contiguous or disparate, even among multiple files. In addition,
CHRONOS provides change history across all historical versions
(i.e., it is not limited to a pairwise ‘“diff”’). The tool implements a
zoom-able user interface as a visualization of the history of the
queried code to provide both a high-level view of the changes,
which supports pattern recognition and discovery, and a low-
level view that supports semantic comprehension for tasks such
as reverse engineering and identifying design rationale. In this
paper, we describe use cases in which CHRONOS may be helpful,
provide a motivating example to demonstrate the benefits brought
by CHRONOS, and describe its visualization in detail.

I. INTRODUCTION

The ability to efficiently answer questions about source-code
history is a key factor in a software developer’s productivity.
LaToza and Myers [10] found that developers often ask
questions such as When, how, by whom, and why was this
code changed or inserted? or How has it changed over time?

A wide variety of tasks may benefit from the ability to
answer questions about source-code history. For example,
observing how the source code pertaining to a feature changed
over time might help a developer understand the rationale
for its current implementation. Also, finding out who was
involved in modifying a functionality over time would help
developers identify other knowledgeable developers about that
functionality. As a final example, discovering multiple artifacts
that are modified over the history of the code in a synchronized
fashion may suggest an implicit relationship among these
artifacts, and further may be used as an exemplar for future
edits. Zimmermann et al. defined this implicit relationship as
evolutionary coupling [16].

Revision Control Systems (RCS) (e.g., CVS, Subversion,
Git) afford many benefits in terms of supporting software-
development tasks. However, they provide limitations for ex-
ploration, querying, and discovery of even moderately complex
historical events in the evolution of the source code.

First, current RCS tools operate at only two different levels
of granularity for the dimension of the program: a source code
file or the whole project. When a developer needs to query the
history of source code at finer levels of granularity than a file,
she will have to manually filter the historical information that
is not related to her lines of code of interest. Additionally,
if a developer needs to query the history of source code that

involves multiple files, she either needs to query the history
of the whole project, or separately query the history of each
file of interest and then manually synthesize the results.

Second, current RCS tools allow only two operations over
the dimension of history: obtain one previous revision, or
obtain all the revisions. As previously mentioned, a developer
may be interested in the history of source code at a different
granularity than a whole file, e.g., the history of a set of lines
of code. In such cases, only a subset of revisions will contain
changes to the lines of interest, and the developer will have
to manually filter those revisions that do not contain changes
to them. Also, obtaining only one previous revision of the
source code file at a time involves a repetitive process that
has to be manually performed until all the revisions of the
lines of interest are obtained.

To addresses the limitations of current RCS tools, we
present our tool CHRONOS. CHRONOS is an implementation
of our History Slicing approach [12], which allows developers
to select any set of lines of interest, contiguous or disparate,
from any set of files. For the selected set of lines of interest,
CHRONOS visualizes their complete history, including only the
revisions that modified them. With its visualization, CHRONOS
facilitates (1) interactive querying of the history of any set of
code at any point in time, (2) exploration of the query results to
support both a high-level view of the evolution and a detailed
view of the changes, and (3) discovery of patterns of change
among multiple components of the code.

II. MOTIVATING EXAMPLE

Consider a scenario in which we need to understand how
two methods co-evolved, for example, to understand how they
are related and thus how they should be co-modified.

To demonstrate the benefits brought by CHRONOS, we use
actual results from a real-world program, ASPECTJ. Table I
defines the two code selections (S4 and Sg) from two files
(F4 and Fg) and the revision. Next, we describe the effort
that would be spent in obtaining the complete evolution of
S4 and Sp by using a state-of-the-practice tool, Eclipse’s Git
plug-in, and by using CHRONOS.

Traditional Tool: Eclipse’s Git Plug-in. By using Eclipse’s
Git plug-in, we could request all the revisions of F)y with the
Show History command, and then manually call the Compare
command to see the changes performed by each one of the
revisions. With this approach, we would have to inspect the
whole contents of the file for 81 revisions of F4 and 120
revisions of Fp. However, only 11 revisions of F4 and 21

TABLE I
HISTORY SLICING CRITERION FOR MOTIVATING EXAMPLE.

Program: ASPECTJ (http://www.eclipse.org/aspectj/), with 8+ years
history and ~510KLOCs

Revision ID: 6c59333620d99c4eed53c17£70d9ba66d157bf64

Selection all lines in makeJoinPointSignatureForMethod-

Sa: Invocation () in BcelWorld. java (i.e., File Fu)
Selection all lines in mungeNewField () in
Sp: BcelTypeMunger. java (i.e., File Fig)

revisions of Fp contained changes to the code in which we
are interested, i.e., S4 and Sp. With this first approach, we
would be manually navigating the dimension of the program
by inspecting the contents of all the revisions for a file, and
we would be manually navigating the dimension of history by
manually identifying the revisions that actually modified the
lines of code of interest.

An alternative approach would be to use the Show An-
notations command instead of the Compare command. An
annotation shows the latest revision that modified each line
of code, therefore allowing us to skip revisions that did not
modify S4 and Sp. However, we would still have to check
the annotation for every line of code in S4 and Sp — which
can be tedious when there are many of them — and manually
call the Show Annotations command again for every visited
revision. As a result, we would still be manually navigating
both the dimension of the program and history. In a previous
user study [12], when using Eclipse, only 2 participants were
able to answer a question about the history of S4 and Sp
within a time frame of 10 minutes, with an average time of
9:57 minutes.

Our New Tool: CHRONOS. By using CHRONOS, we would
simply select the lines of code in S4 and Sp in Eclipse’s editor
and select the Add to History Slicing Seed command. Then,
we would run the Display History Slice command. CHRONOS
would then show a single visualization with the complete
history of S4 and Sp. In a previous user study [12], when
using CHRONOS, all of the participants were able to answer a
question about the history of S4 and Sp in an average time
of 5:19 minutes.

III. VISUALIZATION

We implemented our tool CHRONOS in Java as an Eclipse
plug-in and it currently supports the CVS, Subversion and
Git revision-control systems. In its visualization, CHRONOS
can display the history of any set of lines of code. Also, it
displays multiple selections of groups of code lines. Figure 1
depicts an example of how CHRONOS displays the history of
two code selections. Below, we describe the components of
the visualization and the interaction options in CHRONOS.

Components. Our visualization in Figure 1 is composed of
two main parts. At the top, the two horizontal gray bars
represent the global timeline. Below the global timeline, are
two individual areas, each of which displays the history of one
code selection.

Global, Multi-selection Timeline Visualization. The top area of
the visualization displays a set of timelines—one for each one

| | 08, ut|,\‘,ﬁu Author: aclement <aclement or prog an f:m\‘:|rw:r!:ﬁs|(|ﬁm', members created via ITD 1!

Fig. 2. Global, multi-selection timeline visualization supports pattern re
cognition and discovery.

of the code selections. A zoomed-in view of the global timeline
is depicted in Figure 2. The goal of the global timeline is to
allow developers to discover patterns in the evolution of the
selected snippets of code. In the global timeline, a developer
could quickly answer questions such as: “Was a code snippet
modified at a particular point in time but not in others?”, or
“When were two code snippets changed together, and when
were they changed separately?”

The top part of the global timeline is annotated with a ruler
of equidistant ticks that represent months in time. Time is
represented in increasing order from left to right, having the
latest dates on the rightmost side of the timeline. The upper
gray bar represents the history of the first code selection and
the lower gray bar represents the history of the next code
selection. A blue mark inside a gray bar denotes a change to
its code selection at that time. Also, users can highlight any of
the blue marks to show meta-data about a change, particularly
its date, author and commit message. Figure 2 shows a change
highlighted in orange and its meta-data also in orange text.

A developer could quickly refer to the meta-data of specific
changes for a better understanding of an observed change
pattern. Additionally, if the developer wants to perform a more
in-depth investigation of the code’s evolution, she could also
explore the actual contents of a change by looking at the
individual histories that are depicted below the global timeline.

Individual Histories. The second component of the visualiza-
tion of CHRONOS are the individual histories for the code
selections. We show in Figure 3 a zoomed-in view from
Figure 1 into the individual history of a code selection.
Each individual history is in turn composed of two parts: the
individual timeline at the top and the snapshots of code at the
bottom. A snapshot of code depicts the contents of the selected
lines of code at a point in time when they were changed.

By including the individual timeline at the top, CHRONOS
allows users to get a sense of the time that passed between
changes. At the same time, by displaying the snapshots of
code side by side, CHRONOS allows users to easily compare
corresponding lines of code between revisions.

Since the spacing between changes in the timeline and in the
snapshots areas is different, CHRONOS connects with a blue
line changes in the timeline with their corresponding snapshot.
This connection is the only difference between the timeline
for a code selection inside the individual history and inside
the global timeline.

Similarly to the global timeline, changes can be highlighted
in the individual timeline for a quick view of their meta-data
and for an easier identification of their corresponding snapshot.
A highlighted change and its connection to its corresponding

Fig. 1.

Visualization of CHRONOS.

new members created via ITD 11"

(08/08§2005). Author: aclement <aclement>. "Fix for pr989| copyvgimolatu

ys" (07/20/2005) Author: acolyer <acowf/er> “"changes to construction and representation of parameterized types, and" 08/08/2005) Author: aclement <aclement>. "Fix for pr98901: copying annotations to new membel
private boolean mungeNewField(BcelClassWeaver weaver, NewFieldTypeMunger munger) { vate boolean mungeNewField(BcelClassWeaver weaver, NewFieldTypeMunger munger)
045 /*ResolvedMember initMethod = */munger.getInitMethod(aspectType); 09 /*ResolvedMember initMethod = */munger.getInitMethod(aspectType);
047 LazyClassGen gen = weavergetLazyClassGen)i 11 LazyClassGen gen = weaver.getLazyClassGen();
gﬁg = munger. e(); % ResolvedMember field = munger.getSignature();
on()); 051 ResolvedType onType = weaver.getWorld().resolve(field.getDeclaringType(),munger.getSourceLocation()); 15 ResolvedType onType = weaver.getWorld().resolve(field.getDeclaringType(), munger.getSour:

054 boolean onlnterface = onType.isInterface();

056 if (onType.isAnnotation()) {
057 signalError(WeaverMessages.ITDF_ON_ANNOTATION_NOT_ALLOWED, weaver,onType);
058 s return false;

061 if (onTylpe isEnum()) &
nal Error(Weaver lessages.ITDF_ON_ENUM_NOT_ALLOWED, weaver,onType);
063) return false;

Fig. 3.

snapshot can be seen in Figure 3 in orange. The individual
timeline and the global timeline are connected, so that if one
of them is highlighted, the other one is also highlighted, which
can be seen in Figure 1.

The individual history of a set of lines of code contains
as many snapshots as the number of revisions that contain
changes for them. If a file has a revision in which the selected
lines of code were not changed, that revision is not displayed
by CHRONOS. Each snapshot is represented with gray text
for those lines of code that were selected but not modified
in that snapshot, and with blue text for the lines of code that
were selected and were modified in that snapshot. Consecutive
snapshots are represented side by side and aligned to each
other for an easier comparison. For example, in Figure 3, lines
1131 to 1135 were added in August 8th, 2005. We know that
these lines were added since there are no lines that correspond
to them in the previous snapshot of July 20th, 2005.

Finally, each snapshot is also annotated with meta-data of
the change in green: the date, author, and commit message.
The goal of including the meta-data of a change on top of
the snapshot is to aid in the understanding of the rationale
of changes. By looking at a snapshot, developers can see at
a glance not only the changes that were performed in that

18 boolean onlnterface = onType.isInterface();
20 if (onTy%e .isAnnotation())

{
21 signall rro (WeaverMessages.ITDF_ON_ANNOTATION_NOT_ALLOWED,weaver,onType);
22 3 return false;

25 if (chylpe isEnum()) ’&
na Error(Weaver lessages.ITDF_ON_ENUM_NOT_ALLOWED, weaver,onType);

31 ResolvedMember interMethodBody = munger.getInitMethod(aspectType);

33 AnnotationX annotationsOnRealMember] = nul;
re

35 /) Por copying the annotations across, we have to discover the real member in the aspect

The individual history of a code selection provides semantically rich detail of code changes and supporting meta-data.

revision, but also additional information that may help them
understand why the changes were performed.

Interaction. CHRONOS allows three mechanisms for interac-
tion: zooming, panning, and highlighting.

Zooming and Panning. In order to provide users with both a
summarized view of the history of source code and a detailed
view of the specific changes performed as well as their meta-
data, CHRONOS supports panning and zooming on a scalable
vector graphic visualization. When CHRONOS is executed,
it provides a complete view of the individual histories that
correspond to all the sets of lines of code selected, and all
the snapshots that exist for them. This summarized view
allows developers to have a first quick view of the timing
of changes for each individual history and how many lines
were changed in each snapshot. An example of this view is
depicted in Figure 1. Then, CHRONOS allows zooming without
loss of quality. In the same manner, CHRONOS allows users
to move to any part of the visualization to focus on and
explore different aspects of it. Examples of detailed views are
Figures 2 and 3.

Highlighting. As mentioned before, CHRONOS allows the user
to highlight a change when they hover the mouse over it.

When a change is highlighted, CHRONOS shows the meta-
data corresponding to it and changes the color of the link
to its corresponding snapshot to orange. With this feature,
users can see properties of changes quickly from the timeline
without having to pan and zoom to re-focus to the snapshot.
In addition, highlighting changes makes it easier to follow the
connection and identify their corresponding snapshot.

IV. RELATED WORK

Multiple visualizations have been proposed for visualizing
the evolution of source code. In terms of the dimension of the
program, many authors propose visualizations that show the
evolution of the whole software system with a level of detail
of source code files, e.g., [5], [9], [13], [15]. In terms of the
dimension of history, such techniques allow the visualization
of the whole history of the software system.

In order to provide a more detailed understanding, other
authors have proposed techniques that visualize the history
of source code at finer levels of granularity. Some techniques
display evolution information about source code methods [6]-
[8]. Hassan and Holt [6] and Holmes and Begel [8] annotate
source code methods with additional information taken from
commit operations. Hattori er al. [7] list all the changes that
affected a source code method. Then, users need to select
one change at a time to see the diff that it caused. In terms
of the dimension of history, Hassan and Holt’s and Holmes
and Begel’s approaches display the complete history of the
source code method. Hattori et al., however, offer a finer-
grained visualization of the dimension of history, by displaying
changes captured in the IDE between commit operations.

Other techniques provide a visualization at the line-level
granularity, e.g., [1]-[3], [11], [14]. Ball and Eick [1] display
aggregated evolution information for every line of code. They
annotate a SeeSoft [4] visualization with color codes to
indicate historical properties, such as last author, code age, and
ratio of bug-fixing changes to feature-addition changes. Chen
et al. [3] display those lines in the current revision of code
which have ever been changed with a commit message that
matches a user-specified query. Voinea et al. [14] join multiple
SeeSoft views of the source code to represent the evolution of
a source-code file with line-level granularity. They also allow
users to see the diff between two consecutive revisions. Lom-
merse et al. [11] extend Voinea et al.’s approach by allowing
the inclusion of the evolution of multiple files. Bradley and
Murphy [2] display, for each line of code, information about
its last change, such as its author, date, and commit message.
In terms of the dimension of history, Ball and Eick, Voinea et
al., and Lommerse et al. display information about the whole
history of a file (Ball and Eick do so in an aggregated form),
and Chen er al. and Bradley and Murphy display information
only about the last change to each line of code.

In contrast, CHRONOS is the only tool that allows the
visualization of all and only those revisions that affected a
specified set of lines of code and that shows the meta-data as
well as the contents of the code for said revisions in a single
visualization.

V. CONCLUSIONS

In this paper, we described our visualization, which is
implemented in our CHRONOS tool. CHRONOS provides a
zoomable user interface, global and local timeline visual-
izations, detailed semantic source-code change information
and development meta-data, and interaction mechanisms to
support software-development tasks that require understanding
of complex change-history events. With these mechanisms,
CHRONOS enables: (1) precise, granular, and flexible querying
of source-code changes; (2) exploration of the source-code
history to identify detailed and semantically rich information
about the changes and relevant meta-data; and (3) discovery of
event patterns across the evolution for source code of interest.

VI. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under award CCF-1116943.

REFERENCES

[1] T. Ball and S. G. Eick. Software Visualization in the Large. Computer,
29(4):33-43, 1996.

[2] A. W. J. Bradley and G. C. Murphy. Supporting Software History
Exploration. In International Working Conference on Mining Software
Repositories, pages 193-202, 2011.

[3] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang, and
A. Michail. CVSSearch: Searching through Source Code using CVS
Comments. In International Conference on Software Maintenance, pages
364-373, 2001.

[4] S. Eick, J. L. Steffen, and E. E. Sumner Jr. Seesoft-A Tool for
Visualizing Line Oriented Software Statistics. [EEE Transactions on
Software Engineering, 18(11):957-968, 1992.

[5] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How Developers Drive
Software Evolution. In Workshop on Principles of Software Evolution,
2005.

[6] A. E. Hassan and R. C. Holt. Using Development History Sticky Notes
to Understand Software Architecture. In International Workshop on
Program Comprehension, pages 183—192, 2004.

[7]1 L. Hattori, M. Lungu, and M. Lanza. Replaying Past Changes in Multi-
developer Projects. In Joint ERCIM Workshop on Software Evolution
(EVOL) and International Workshop on Principles of Software Evolution
(IWPSE), pages 13-22, 2010.

[8] R. Holmes and A. Begel. Deep Intellisense: a Tool for Rehydrating
Evaporated Information. In International Working Conference on Mining
Software Repositories, pages 23-26, 2008.

[9] M. Lanza and S. Ducasse. Understanding Software Evolution using

a Combination of Software Visualization and Software Metrics. In

Langages et Modeéles a Objets, pages 135-149, 2002.

T. D. LaToza and B. A. Myers. Hard-to-Answer Questions about Code.

In Evaluation and Usability of Programming Languages and Tools,

pages 8:1-8:6, 2010.

G. Lommerse, F. Nossin, L. Voinea, and A. Telea. The Visual Code

Navigator: An Interactive Toolset for Source Code Investigation. In

IEEE Symposium on Information Visualization, pages 24-31, 2005.

F. Servant and J. A. Jones. History Slicing : Assisting Code-Evolution

Tasks. In Foundations of Software Engineering, pages 43:1-43:11, 2012.

L. Voinea and A. Telea. Visual Querying and Analysis of Large Software

Repositories. Empirical Software Engineering, 14(3):316-340, 2009.

L. Voinea, A. Telea, and J. J. van Wijk. CVSscan: Visualization of Code

Evolution. In ACM Symposium on Software Visualization, pages 47-56,

2005.

R. Wettel and M. Lanza. Visualizing Software Systems as Cities. In

International Workshop on Visualizing Software for Understanding and

Analysis, pages 92-99, 2007.

T. Zimmermann, P. Weibgerber, S. Diehl, and A. Zeller. Mining Version

Histories to Guide Software Changes. In International Conference on

Software Engineering, pages 563-572, 2004.

[10]

[11]

[12]
[13]

(14]

[15]

[16]

