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ABSTRACT

Many software-engineering tasks require developers to un-
derstand the history and evolution of source code. How-
ever, today’s software-development techniques and tools are
not well suited for the easy and efficient procurement of
such information. In this paper, we present an approach
called history slicing that can automatically identify a min-
imal number of code modifications, across any number of
revisions, for any arbitrary segment of source code at fine
granularity. We also present our implementation of history
slicing, CHRONOS, that includes a novel visualization of the
entire evolution for the code of interest. We provide two ex-
periments: one experiment automatically computes 16,000
history slices to determine the benefit brought by various
levels of automation, and another experiment that assesses
the practical implications of history slicing for actual devel-
opers using the technique for actual software-maintenance
tasks that involve code evolution. The experiments show
that history slicing offered drastic improvements over the
conventional techniques in three ways: (1) the amount of
information needed to be examined and traced by develop-
ers was reduced by up to three orders of magnitude; (2)
the correctness of developers attempting to solve software-
maintenance tasks was more than doubled; and (3) the time
to completion of these software-maintenance tasks was al-
most halved.

Categories and Subject Descriptors. D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement
— wersion control; D.2.9 [Software Engineering]: Manage-
ment — software configuration management

Keywords. Mining Software Repositories, Program Com-
prehension, Software Evolution, Software Visualization

1. INTRODUCTION

Software developers frequently face hard-to-answer ques-
tions about source code. A study by LaToza et al. [22] found
that answering questions about rationale is a serious prob-
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lem for developers. Additionally, Ko et al. [18] found that
questions about why code had been implemented in a cer-
tain way were among the most time consuming to answer. A
different study by LaToza and Myers [21] found that some
of the hard-to-answer questions seek knowledge about the
history of code — like when, how, by whom, and why some
code was changed or inserted. Answering questions about
the history of source code also serves as a strategy for un-
derstanding rationale because it potentially provides context
and motivation. Given the frequency and difficulty of such
tasks, mechanisms that efficiently support them can signifi-
cantly and positively affect software-developer performance.

Existing software-configuration management (SCM) sys-
tems, such as CVS [10], Subversion [1] and Git [31], allow
users to track and query revisions and investigate differences
per file. However, studies have found that developer tasks
require information about the history at the level of a block
of code and that developers require information about a se-
ries of changes [15, 21].

To address this need, existing SCM systems provide fea-
tures, such as “annotate,” that allow a developer to view,
for each line of a file, the last revision in which it was mod-
ified. Such features address the need for line-level querying,
but do not enable for efficient inspection of a sequence of
changes for an arbitrary block of code. While such querying
can be performed with these tools, they require significant
manual effort by the developer to track a line of interest,
track and query each of its past revisions, and then to re-
peat and synthesize the results for each line of interest.

To better support such querying and exploration of the
evolution of source code, we created a technique called his-
tory slicing [30] that automatically tracks the lineage of each
line of code in an SCM system and efficiently enables devel-
oper querying and exploration of such evolution. The his-
tory slice for a set of lines of code of interest (i.e., slicing
criterion) contains all their corresponding lines of code in
all past revisions of the software project in which they were
modified. The goal of a history slice is to provide a reduced
amount of information about the history of a set of lines
of code. In the same way that program slicing selects the
relevant areas of the code in the dimension of space, history
slicing selects both the relevant revisions of the code in the
dimension of time and the appropriate lines of code in each
of those revisions in the dimension of space.

History slicing addresses the limitations of traditional SCM
systems by providing the ability to (1) query at the line level,
any arbitrary set of lines, across any set of files, and (2)
view the minimum complete evolution of those lines, along



with their tracing among revisions. A third, emergent, ben-
efit of such a technique is that the results reveal interesting
patterns that indicate characteristics of the code evolution
that were previously obscured (such as co-evolution of two
method bodies).

In this paper, we provide three main contributions:

e A detailed description of the concept of history slicing,
which enables developers to generate a history slice for
any arbitrary set of lines of code (i.e., contiguous or
fragmented, and in a single file or across any number
of files). We provide a definition of history slicing, a
detailed description of how history slicing is performed
with today’s SCM systems, and summarize our ap-
proach to automating it.
A description of CHRONOS, our implementation of his-
tory slicing, which includes the model generation, anal-
ysis, and a novel user interface that provides a visual-
ization of any history slice that may include many files
and revisions. The visualization also supports devel-
opers to visually recognize patterns in the evolution of
the code.

e An extensive evaluation consisting of two experiments.
The first experiment involves the computation of 16,000
history-slicing tasks to evaluate the degree to which
our technique may alleviate the information overload
that would be present with existing tools. The sec-
ond experiment is a user study of actual developers
and includes 48 history-slicing tasks to evaluate the
real-world impact of our technique.

2. MOTIVATION

A study by LaToza et al. [21] observed developers at their
workplace and found that they frequently ask questions about
the history of source code. They also found that developers
wanted to know both the latest changes and the entire his-
tory at the level of a code snippet. In addition, two different
studies by LaToza et al. [22] and Ko et al. [18] found that de-
velopers often asked questions about why a snippet of source
code had been implemented in a specific way. They also
found that resolving such questions about the rationale of
source code was highly time-consuming. Methods that can
provide the code’s creation and evolutionary history may
help developers to understand such design-rationale motiva-
tions and the context in which they were made.

The exploration of the entire history of a set of lines of
code can be applied in a wide variety of scenarios. Con-
sider an example scenario in which a developer wants to
find an earlier implementation of a specific piece of code,
for example, a loop body. In this example situation, our
developer implemented multiple versions of the functional-
ity performed by that loop throughout the history of the
project. At some point, she realizes that a specific earlier im-
plementation better suits the needs of the program, but she
can’t remember which revision contains the desired imple-
mentation. In this situation, finding which revisions contain
changes for that specific loop body and the corresponding
lines to that piece of code in each of those revisions can be
a tedious task if performed with today’s SCM tools, unless
log messages were quite explicit and detailed (and, even still,
there would likely be an overabundance of log messages to
read to find the specific revision).

In another example scenario, a project manager may need

to know all of the developers who ever modified a specific
segment of the source code, for example, two methods that
interact to form a specific functionality. LaToza et al. found
that developers asked questions about the authorship of code
and their teammates [21], and a number of researchers pro-
posed approaches for mapping “expert” developers to com-
ponents of source code [e.g., 11, 13, 17, 25, 26, 29]. How-
ever, if a developer wanted to perform a detailed exploration
through the history of when, how and why each developer
made changes to that segment of the source code, she would
again need to perform a tedious task with today’s SCM tools.

In a final example scenario, developers may want to ex-
plore the parallel history of multiple segments of source code
in order to find out whether and when they were modified
together. Zimmermann et al. found that multiple soft-
ware artifacts being committed together to the source code
repository is a signal of these entities being dependent on
each other. This dependency is the definition for evolution-
ary coupling [34]. Another motivation for tracking commits
across multiple arbitrary segments of code is to help assess
code clone risks. Bakota [3] found that segments of code
that are identified as code clones often were modified to-
gether, and that violations of this pattern can indicate pos-
sible problems. In each of these cases, extracting and pre-
senting a detailed exploration of the history of two pieces
of code (for example, two small methods in two large files)
would be a highly repetitive and time-consuming task if per-
formed with today’s SCM tools.

A common characteristic of each of these three scenarios
is that they are difficult to answer with today’s SCM tools,
for three reasons: (1) they require deep exploration of the
history (i.e., not simply a pairwise diff); (2) they require
the exploration of multiple sets of lines of code, potentially
across multiple files; and (3) they require the recognition of
patterns and characteristics across potentially long epochs
of the projects’ life. We posit that a technique that can auto-
matically address and assist with these three code-evolution
task characteristics can benefit developers attempting to
solve such tasks.

We conjecture that for all three of these scenarios, devel-
opers often give up on answering such code-evolution ques-
tions. That is, because these tasks are exorbitantly time
consuming to perform with today’s SCM tools, the possibil-
ity for successfully and accurately answering them is consid-
ered infeasible. In this paper, we first present history slicing
as a means to assist such code-evolution tasks, and secondly,
study whether and how efficiently history slicing allows their
performance.

3. SLICING OF HISTORY

History slicing models the process that developers have to
follow in order to obtain the whole history of a set of lines of
code. To display a real-world example, Figure 1 represents
the whole history of lines 999-1011 up to revision 1.162 of file
AjBuildManager.java of the AspectJ [9] open-source project.

Source code files are normally committed multiple times,
generating multiple revisions. However, not all revisions
contain changes to all lines of code. In our example, out
of a total of 162 revisions for file AjBuildManager.java, only
revisions 1.156, 1.134, 1.60, 1.14 and 1.1 contain changes to
the lines of interest.

We define lines of interest as the lines of code whose his-
tory a developer wants to explore. Each line of interest will
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1004  classpaths[ij =cps... — 990 classpaths[i] = (Str... —> 945  classpaths]i] = (Str...
1005 } — 991 } —> 946 }

1006 environment = new... — 992 environment = new... — 947 environment = new...
1007 state.setNameEnv... — 993 state.setNameEnv... —» 948 state.setNameEnv...

1008 }else{ — 994 }else{

1009 ((StatefulNameEnwv... — 995 ((StatefulNameEnv...

1010 state.deltaAddedC... —» 996 state.deltaAddedC...

1011 } —> 997 } — 950 }

651 List cps = buildCon...
652 Dump.saveFullCla...
653 String[] classpaths...

375 List cps = buildCon...

376 String[] classpaths...

— 654 for (inti=0;i<cp... — 377 for (inti=0;i<cp...
— 655 classpaths[i] = (Str... —» 378 classpaths]i] = (Str...
—> 656} — 379} —» 376}

Figure 1: Real world example of the history of a set of lines of code.

also be characterized by the revision of interest of the file
of interest inside which it is contained. These lines of inter-
est may be few (e.g., a single line or a basic block of code)
or numerous (e.g., a method or class); contiguous (e.g., a
method) or fragmented (e.g., a dynamic slice); and within
a single file (e.g., a method) or across multiple files (e.g.,
a test case’s statement-coverage set). Such sets of lines of
interest are akin to a “slicing criterion” for program slicing.

We also define snapshot as the set of lines of code in a par-
ticular version that correlate, either directly or transitively,
to the original lines of interest; i.e., a snapshot represents a
previous state of the lines of interest. Thus, the snapshot of
lines of interest 999—1011 for revision 1.134 is represented by
lines 940-948 and 950. The line numbers of a snapshot are
different in each revision, since an undetermined number of
lines will be added and/or deleted before and after it.

The product of history slicing is a history slice. The his-
tory slice for a set of lines of interest contains all their snap-
shots in all the past revisions in which they were modified.

Slicing history with today’s SCM systems is not trivial
because they do not provide an automated way of obtaining
the whole history of an arbitrary set of lines of code. Instead,
four subtasks are required:

1. Retrieve the previous revision r of a file.

2. Find inside revision r which lines correspond to the
lines of interest.

3. Check the contents of those lines and identify whether
they were modified.

4. If they were modified, save them. Return to Step 1
until all history is explored.

Depending on their level of expertise with today’s SCM
systems, developers may perform these steps by using a fully
manual approach or a more advanced conventionally assisted
approach, as well as a spectrum of approaches in between.

3.1 Manual, Naive Slicing of History

We present this approach, (1) because it is the most straight-

forward solution and one that is likely to be employed by
more novice developers who are unaware of advanced fea-
tures of SCM systems and (2) because it clearly demon-
strates the challenges brought by each of the four subtasks.

To determine the previous revision to the revision of in-
terest (Step 1), a developer could manually retrieve every
individual revision of the file(s) of interest from the SCM
system. Of course, this requires an exorbitant amount of
unnecessary work because only a subset of those revisions
contain changes for the lines of interest. We can say that

this inefficiency affects the search in the dimension of time
(as indicated by the “Time dimension” arrow in Figure 1).

To determine the snapshot in a prior revision (Step 2),
the developer would, in the worst case, manually inspect
the full contents of the files in order to find the position of
the snapshot. If the files are large, this step also involves
a high amount of unnecessary work. We can say that this
inefficiency affects the search in the dimension of space (as
indicated by the “Space dimension” arrow in Figure 1).

To determine whether there are changes in the snapshot
(Step 3), the developer would compare each pair of snap-
shots. This comparison may not be straightforward when
the snapshots are large, disjoint, or contain subtle and hard-
to-notice changes.

Finally, to keep track of the entire history of the lines of
interest (Step 4), the developer would need to keep a log of
all the snapshots for all the files. This log could be kept in a
text editor, requiring application and context switching, and
thereby imposing an additional overhead on the process.

For all of these reasons, following such a naive approach
can be extremely time consuming. We want to point out
that while this manual approach may often be an unrealistic
scenario, developers are likely to follow it in cases when they
don’t have much expertise with SCM systems or in cases
where the task only involves a few changes in a few lines in
a single file. Nonetheless, we present the manual approach
mostly for illustrative purposes.

3.2 Conventionally Assisted Slicing of History

Developers may use capabilities of SCM systems to sup-
port the previously mentioned four steps for slicing history.

In order to determine the previous, modified revision (Step
the developer can utilize the annotate/blame feature on the
revision of interest. Annotate will return, for every line in
the file, the latest revision to modify it. Then, the developer
would need to manually find the snapshot inside annotate’s
output. Since annotate will return different last revision
for different lines, the developer would select the most re-
cent (highest) revision r in which any of the lines in the
snapshot was modified. This automation would resolve the
inefficiency in the dimension of time of the manual approach.

To find the snapshot inside revision r (Step 2), the de-
veloper may use the Ctrl+F functionality in a text editor
with the contents of the revision in order to navigate to the
area of the file that contains the snapshot. However, this
option might still involve multiple attempts. Since develop-
ers would be searching in an older revision, they might be
searching for words that were different then. Another short-
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Figure 2: Approach to automatically compute history slices.

cut for this step would be to run diff over r and r—1, but the
developer would still have to manually inspect the contents
of its output. Additionally, for both Ctri+F and diff, in
the case of fragmented snapshots, each line of the snapshot
would have to be found individually and manually. While
this automation mitigates the inefficiency in the dimension
of space of the manual approach, it is hard to predict by
how much. In a worst case scenario, the developer would
still need to inspect the full contents of the file.

Determining whether the snapshots are different (Step 3),
will be straight-forward, since annotate will directly point
developers to only those revisions which do contain changes
to the snapshot. However, some degree of inefficiency would
be introduced in this step if the specific implementation of
annotate detects false modifications, such as modifications in
white space. In such case, developers would have to inspect
some unnecessary revisions.

Keeping track of the history slice (Step 4), is still per-
formed exactly as in the manual approach.

In summary, this approach assists the process of finding
the history of a set of lines of code. However, despite some
automation, it is still a highly manual process of performing
multiple commands and correlating and interpreting their
output. In the extreme case where the lines of interest are
fragmented and scattered among multiple files, this process
can be extremely time consuming, even with such assistance.

4. AUTOMATION OF HISTORY SLICING

Our approach to automating history slicing involves mul-
tiple steps, each of which can be parameterized in a number
of ways. The overall process is depicted in Figure 2.

Step 1: Build History Graph. In the first step, we
create a history graph, which contains the history of each
line of code. A history graph is a multipartite graph where
each part represents a revision of a file. Inside a part, each
node represents a line of code in that revision. Each node
is linked to only one node in the previous part and/or only
one node in the following part. Additionally, each node can
be labeled to store additional metadata, such as authorship,
time stamps, and log messages. Figure 3 shows a simple
example of a history graph. In this figure, each node contains
a label, which describes the operation that produced each
line in each revision. In general, history graphs are similar
to annotation graphs [33]. Unlike the “modification hunk”-
granularity of annotation graphs, history graphs require a
one-to-one node mapping between revisions.

The links between nodes are assigned by applying a line-
mapping (i.e., fine-grained program-differencing) technique.
Because existing line-mapping techniques vary in their power
and flexibility, our framework allows the choice of line map-

u c u a
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Figure 3: History Graph.

ping to be customized according to the tasks at hand. For
example, a simple plain-text differencing technique may be
desirable if following the history of non-executable code,
such as comments or XML metadata. Alternatively, a dif-
ferencing technique based on the abstract syntax tree may
be desirable to track changes that change the structure of
the executable code.

Once the history graph is built, it can be used for the
computation of any history slice. Building the history graph
is a one-time expense and, as the code history grows, it can
be extended with minimal effort.

Step 2: Select Slicing Criterion. In the second step of
our approach, we need to select a slicing criterion, which
contains a set of lines of interest from a specific revision
of a program. The slicing criterion may contain any set of
lines of code, contiguous or fragmented, from any file and
revision or combination of files and revisions. This freedom
is provided as a result of the fine grain in which the history
graph stores the evolution of the source code.

Step 3: Traverse History Graph. In the third step,
the approach traverses the history graph, starting from the
nodes that represent the slicing criterion. In this traversal,
the approach visits all the nodes included in the history path
of all the lines of code in the slicing criterion. A history path
for a line of code includes all the changes to it, from the
moment that it was initially conceived, until it is deleted or
is part of the newest revision of the file. In the process of
traversing a history path, nodes are marked for inclusion into
the slice according to the choice of a minimal history slice
(visited modified nodes) or extended history slice (visited
modified and unmodified nodes, for all revisions in which
there is at least one modified node). Marked nodes will be
considered as part of the final history slice.

Step 4: Represent History Slice. The fourth and final
step of our approach is the visualization of the history slice.
This step is also performed differently, depending on the task
being solved. Some scenarios will require minimal informa-
tion, such as statistics on the number of changes made on a
set of lines, while other scenarios will require more context
and therefore will need to display the history slice together
with the lines that surround the snapshots.

In summary, all four steps can be performed in multiple
ways. The decision about how to implement each of them
will be influenced by the intended use of the history slice.
This decision will also affect the contents of the computed
history slice. In any case, a history slice will contain a mini-
mal, but complete amount of information about the history
of a set of lines of code.

5. CHRONOS

In order to facilitate experimentation, we instantiated the
automated history-slicing framework that we described in
Section 4 in a tool, CHRONOS. For each step of the frame-
work, we describe the choices made in its implementation.



Step 1: Build History Graph. We implemented a com-
ponent of CHRONOS that queries an SCM system and builds
a history graph. This component first obtains the list of all
files stored in the repository. Next, for each file, it queries
its list of revisions. Then, for each revision, it retrieves its
contents as well as its diff with the previous revision. For
each line of code for a particular revision, it creates a node.

The final step for the graph builder is to create the correla-
tion edges between consecutive revisions. This step requires
a line-mapping technique [e.g., 2, 5, 6, 7, 8, 16, 24, 27, 32, 33].
We incorporated many of the lessons and methods of such
techniques to form our own line-mapping technique. In the
same way as Chen et al. [6], our technique performs a first
phase that utilizes the SCM system’s diff functionality to
determine added, deleted, and changed individual lines (and
labels their nodes as such), and for those lines that diff
marks as blocks of changes (i.e., modification hunks), a sec-
ond phase is utilized to provide a line-to-line mapping. Much
like Williams and Spacco [32], we used the Kuhn-Munkres
combinatorial optimization algorithm [19], coupled with a
computed Levenshtein distance [23], to compute an optimal
mapping among lines in such change blocks.

The final result of graph-building component is a history
graph that contains the complete history of any line of the
project. The graph is stored in a relational database that
can be queried both directly and through a supporting API.

Step 2: Select Slicing Criterion. We implemented the
slicing-criterion selector as an Eclipse plugin. A developer
can open any revision of any file, select any set of lines,
and right-click to reveal a contextual menu that includes an
option to “Add to History Slicing Criterion.” As such, any
set of lines, contiguous or fragmented, across any number of
files or revisions, can be added to the slicing criterion.

Step 3: Traverse History Graph. Once the history
graph is built (Step 1) and the slicing criterion has been
specified (Step 2), the history slice can be computed. The
history-slicer component is initiated through the Eclipse plu-
gin (or, alternatively through the API). The history slicer
interacts with the relational database that contains the his-
tory graph through SQL queries. The history slicer tra-
verses the history graph from the most recent revision of
each line in the slicing criterion, and traces their evolution
going backward in time. Each revision that contains changes
is recorded and the snapshot at that revision captured.

Step 4: Represent History Slice. With the history slice
computed, it can be presented to the developers for them to
explore and interpret. For this component, we implemented
an interactive visualization of the history slice. The visu-
alization is a zoom-able canvas that depicts all snapshots
for all lines in the slicing criterion, with mappings between
them. In addition, timelines are presented to show propor-
tionally, in time, when changes were made.

Figure 4 is a screenshot of the history-slice visualization
in CHRONOS. The history slice that is being visualized was
computed from a slicing criterion that spanned two files.
The top two gray bars (labeled as @ in the figure) repre-
sent a global display of the timelines for these two files. Just
above them, a gray ruler marks the months that the time-
lines encompass. Inside each of these timelines, each blue
mark represents a revision of that file that includes changes
relevant to the original slicing criterion, at the position in
the timeline that represents the time of the revision.

The top two timelines are placed adjacent to allow the
user to view correlations between changes and their times,
and thus potentially recognize patterns. In contrast, the
timelines are repeated below (labeled @ and @), with
call-out lines for each modification revision that lead to the
full source code of the snapshot.

Each snapshot is colored to indicate which lines in the
snapshot were modified in that revision: blue lines were
changed in that revision and gray lines stayed unchanged.
In addition, each snapshot is annotated with metadata, such
as the revision number, date, and author, colored in green.

The entire visualization is zoom-able and pan-able allow-
ing the user to both (1) see a high-level view of all changes
and revisions, and to potentially recognize patterns in the
changes, and (2) to inspect and explore the fine details of
what was changed, and when. We depict a zoomed-in screen-

shot in the overlaid call-out (labeled @)

6. EVALUATION

Utilizing CHRONOS, we conducted two experiments to de-
termine the merits of automating the slicing of history. The
first experiment involves the construction of 16,000 history
slices using various levels of automation. The goal of the
first experiment is to determine the degree to which extra-
neous information can be minimized by the use of history-
slicing automation. The second experiment involves the
study of 24 developers that use tools that provide differ-
ent levels of automation assistance for history slicing. The
goal of the second experiment is to determine the practical
benefits brought to actual developers for performing actual
code-evolution tasks.

To evaluate the effectiveness of history slicing, we define
the following research questions:

RQ1: How much does the automation of history slicing
reduce the problem space in terms of the total
number of lines of code needing to be examined?

RQ2: How much does the size of the slicing criterion
affect the problem space reduction (in both the
time and space dimensions)?

RQ3: What is its practical benefit to developers per-
forming code-evolution tasks?

In both experiments, we use the AspectJ open-source proj-
ect [9] as the code base on which we perform history slicing.
AspectJ is an aspect-oriented extension to the Java program-
ming language. It consists of over 75,000 lines of code and
has been in active development for more than eight years.

6.1 Experiment 1

To answer research questions RQ1 and RQ2, we randomly
produced 1,000 slicing criteria at each of four sizes and com-
puted their history slices using four parameterizations of the
history-slicing approach (discussed in Sections 3 and 4), for
a total of 4,000 different slicing criteria, and 16,000 com-
puted history slices. The goal of computing history slices
with four parameterizations of the history-slicing approach
is to approximate the benefits brought by the range of con-
ventional tools and our automated history slicing approach
(Research Question RQ1). The goal of computing history
slices with four, differently sized slicing criteria was to de-
termine how the size of the slicing criteria affects the degree
of benefit from automation (Research Question RQ2).
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6.1.1 Experimental Variables

We experimented using two independent variables, tech-
nique treatments and slicing-criteria size, and evaluated their
benefit using three dependent variables, number of revisions,
average number of lines, and total number of lines. Each
variable will be defined and motivated in turn.

Independent Variable 1: Technique Treatment. In
order to determine the degree to which the automation of
history slicing can reduce the problem space for code-evolu-
tion tasks (RQ1), we parameterized its computation in the
following four ways:

Treatment 1: Naive. Every revision is examined to determine
where and if any changes were made that are relevant to the
slicing criterion. This parameterization approximates the ef-
fort that would be necessary without any automation at all,
and is presented as a baseline.

Treatment 2: Conventionally Assisted. Only the revisions
required by the annotate tool are examined, and the snap-
shots are found without assistance. For fragmented slicing
criteria, such as a dynamic program slice, each line would be
found individually and manually. Then, we consider that all
lines in each identified revision are manually inspected.

Treatment 3: History Slicing with Context. Only the revi-
sions identified by the automated history slicing approach are
examined, and only the lines inside the snapshots are exam-
ined. In each such revision, at least one line changed in the
history of the slicing criterion. In addition, all lines that have
an evolutionary relationship with the slicing criterion are in-
cluded (as “context”) to provide a full view of each snapshot
at each relevant revision.

Treatment 4: History Slicing without Context. Only the
revisions identified by the history slicing approach are exam-
ined, and only the lines that changed in the snapshot are
examined. For this treatment, the unchanged-yet-correlated
code is omitted. Such a technique may be useful for subse-
quent automated analyses that utilize the output of history
slicing.

Independent Variable 2: Slicing Criterion Size. In

order to determine the degree to which the initial slicing

criterion size affects the problem space reduction, we varied
the sizes of our randomly generated slicing criteria as such:

Size 10. A set of 10 randomly generated contiguous lines of code.
This size was chosen to approximate the size of a block of code
(e.g., an if block).

Size 20. A set of 20 randomly generated contiguous lines of
code. This size was chosen to approximate the size of a small
method or function.

Size 50. A set of 50 randomly generated contiguous lines of code.
This size was chosen to approximate the size of a large method
or a small class.

Fragmented. A potentially fragmented set of varying numbers
of lines of code. In order to select a fragmented (non-con-
tiguous) set of lines of code, we selected the lines executed
by a test case inside a file. We randomly chose a test case,
generated its statement coverage, randomly chose one of the
files that it executed, and selected the lines executed in it as
the fragmented slicing criterion.

Dependent Variables. To assess the problem space size
for a developer (or an automated client analysis) in inter-
preting a history slice, we define the following three depen-
dent variables:

Number of Revisions. The number of revisions in the history
of the slicing criterion that need to be examined.

Average Number of Lines for a Revision. The average num-
ber of lines of code that a developer would need to inspect
in each revision. This is computed as the average number
of lines for any given revision inside the history slice, aggre-
gated across all relevant revisions, according to the treatment
technique.

Total Number of Lines for a Task. The total number of lines
of code that a developer would need to examine across all rel-
evant revisions. This is computed as the sum of all examined
lines across all relevant revisions, according to the treatment
technique. This serves as a proxy measure of the total amount
of work that a developer would need to expend to fully explore
and process the history slice.

6.1.2 Experiment Design

For each slicing criterion size (i.e., Independent Variable
2), we randomly generated 1,000 slicing criteria. Although
history slicing is generalizable to criteria that span mul-
tiple files, for this experiment each individual criterion is
contained in a single file for the continuity requirement of
criterion-size 10-50, and to limit the size of the fragmented
criterion. Also, we discarded and replaced randomly gener-
ated criteria that resulted in no history: that is, the code
in the slicing criteria had no previous revisions. In such
cases, we viewed the prospect of exploring history unneces-
sary and fruitless. Then, for each slicing criteria and treat-
ment technique, we used CHRONOS to generate the resulting
history slice. The resulting history slice was used to com-
pute the resulting dependent-variable metrics to determine
the problem-space costs.

6.1.3 Results

After computing the values of the dependent variables for
each combination of slicing criterion size and treatment tech-
nique, we averaged them and obtained the results displayed
in Table 1.



Table 1: Results for Experiment 1

Slicing Approach Avg. # Avg. # Avg.
crit. revisions lines total
size lines

10 Naive 29.16 | 1,177.44 34,334.29

10 Conventional 3.17 783.04 2,482.24

10 H.S. w/ Context 3.17 10.01 31.74

10 H.S. w/o Context 3.17 3.54 11.24

20 Naive 30.58 | 1,204.98 36,848.30

20 Conventional 4.03 867.58 3,496.36

20 H.S. w/ Context 4.03 19.98 80.52

20 H.S. w/o Context 4.03 5.58 22.51

50 Naive 34.62 | 1,350.64 46,759.26

50 Conventional 5.92 978.00 5,789.75

50 H.S. w/ Context 5.92 49.96 295.75

50 H.S. w/o Context 5.92 9.54 56.47

Fragm. | Naive 23.95 840.03 20,118.83

Fragm. | Conventional 4.41 567.61 2,503.18

Fragm. | H.S. w/ Context 4.41 60.65 267.46

Fragm. | H.S. w/o Context 4.41 6.40 28.24

From Table 1, we focus on the value of the “total lines”
variable as this is a proxy measure of the amount of work
required by the developer in processing the history slice, and
plot it in Figure 5. The value of this variable represents the
size of the problem space when a developer searches for the
history of each slicing criterion by following each approach.

For example, when a developer tries to find the history of
50 contiguous lines of code in a file in the AspectJ project by
manually inspecting each revision of the file, she will have
to search inside an average problem space of 46,759 lines of
code. Such scenarios are likely unrealistic, as any developer
would likely give up very quickly after starting the Naive
approach. We do not expect developers to actually follow
this approach — we present it to demonstrate the size of the
original problem space.

The current practice is probably to use tool-supported
approaches, like Conventionally Assisted, which reduces the
problem space by one order of magnitude. For a slicing crite-
rion of 50 lines, developers face an average problem space of
5,790 lines of code. The reduction of the problem space pro-
vided by the Conventionally Assisted approach result from
the savings in the dimension of time (i.e., fewer revisions).
However, developers still may need to inspect many lines of
each revision (i.e., the space dimension) in order to correlate
each line of each snapshot with their corresponding earlier
and later versions.

The History Slicing with Context approach also provides
another reduction of one order of magnitude in the prob-
lem space over the Conventionally Assisted approach. For
a slicing criterion of 50 lines, the average problem space is
reduced to 296 lines of code. This approach provides sav-
ings in both the dimensions of time and space, because it
reduces the number of revisions that need to be inspected
and the number of lines that need to be inspected inside
each revision.

Finally, the History Slicing without Context approach also
provides yet another reduction of one order of magnitude
over the History Slicing with Context approach. For a slicing
criterion of 50 lines, the average problem space gets reduced
to 56 lines of code. In this case, the full problem space rep-
resents the solution that developers are looking for if they
are interested in a minimal history slice — i.e., only the lines
of the snapshots that actually changed. This approach pro-
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Figure 5: Average total number of lines to be examined by a
developer using each treatment technique. CHRONOS’ auto-
mated History Slice (HS) drastically reduces the expense for
a developer. Note that the columns representing the Naive
approach far exceed the bounds of the chart.

vides further savings, because it further reduces the number
of lines that need to be inspected inside each revision.

In summary, from Experiment 1, we observed a savings of
needed developer effort of an order of magnitude (as mea-
sured by the cumulative number of lines of code needed to
be examined and processed) for each additional level of au-
tomation. In all, the full History Slicing without Context
approach reduced the problem space by three orders of mag-
nitude over the Naive approach.

6.2 Experiment 2

Whereas Experiment 1 demonstrates the quantitative ben-
efits of automating history slicing through the computation
of a large number of slices, Experiment 2 is designed to assess
how these benefits translate to actual use by real develop-
ers seeking to solve real code-evolution tasks (i.e., Research
Question RQ3). As such, Experiment 2 is a comparative
study of users using a Conventionally Assisted approach and
CHRONOS.

6.2.1 Experimental Variables

We experimented using two independent variables — treat-
ment technique and code-evolution task — and evaluated
their benefit using two dependent variables — time to task
completion and task success. In addition, we controlled for
two variables — user subject skill and task order. Each vari-
able will be defined and motivated in turn.

Independent Variable 1: Technique Treatment. We
varied the technique that the subjects used to solve a code-
evolution task. The two techniques were:

Treatment 1: Conventionally Assisted. We selected this tech-
nique as it is the one currently employed by developers. For
the conventionally assisted approach, we used Eclipse’s de-
fault CVS plugin, which is a widely used graphical user inter-
face for CVS, an industry-standard revision control system.
The plugin enables an easy and automated use of the anno-
tate feature: the user can select a file, and through a context
menu, choose to see the last revision in which each of its lines
was changed. It also provides implementations of the Ctri+F
and diff features.



Table 2: Number of subjects with n years of experience with
IDEs and revision control systems.

Tool <1 |12]34]|56| 67|89 | >10
IDEs 0 6 8 5 1 1 3
Revision control 3 8 8 1 2 1 1

Treatment 2: History Slicing with Context. Our automat-
ed implementation of History Slicing, CHRONOS, implemented
as an Eclipse plugin, along with its visualization (presented in
Section 5). We chose to represent history slices with context,
given that they were going to be consumed by humans, as
opposed to history slices without context, which we envision
being used as input for other analysis techniques.

Independent Variable 2: Code-evolution Task. We
varied the code-evolution task that the subjects were asked
to solve. The three tasks were:

Task 1: Authorship. Our user subjects were asked to iden-
tify the complete set of developers who had ever contributed
changes to a segment of code. This task reflects the real task
demand of determining authorship and expertise (discussed
in Section 2).

Task 2: Original Revision. Our user subjects were asked to
identify the original revisions in which a segment of code was
originally created. This task reflects the real task demand of
determining an earlier implementation of a given functionality
(discussed in Section 2).

Task 3: Co-evolution. Our user subjects were asked to iden-
tify the revisions in which two segments of code in two dif-
ferent files were changed within a day of each other. This
task reflects the real task demand of determining “evolution-
ary coupling” for identifying related code or code-clone risk
(discussed in Section 2).

Dependent Variables. To assess the benefits of auto-
mated history slicing to actual developers (RQ3), we define
two dependent variables:

Time to Task Completion. The time that the subject needed
to perform a task. The time is determined by when the sub-
ject decides that they are confident and satisfied with their
result.

Task Success. The correctness of the answer given by the sub-
ject. We precomputed the correct answer for each task in
advance, and were able to determine whether the answer sup-
plied by the subject matched it.

Controlled Variables. To control for the effects of out-

side influences, we vary the following two variables:

Subject Skill. We studied 24 subjects of varying levels of expe-
rience with programming in integrated development environ-
ments (IDEs) and revision control systems. The number of
years of experience with each of these is presented in Table 2

Task Order. We varied the order in which the subjects used
each technique. Half of the subjects used Treatment 1 first
and Treatment 2 second (and vice versa).

6.2.2 Experiment Design

We recruited 24 subjects four our user study. We required
subjects to have knowledge about both Java and revision
control systems. To ensure such knowledge, we asked sub-
jects to fill in an online questionnaire in order to sign up for
our study. We used the information in this questionnaire to
screen subjects according to our requirements and to cap-
ture the demographics of our population. Twenty two of our
subjects were male and two were female. Twenty three sub-
jects fell in the age group 18-29 and one of them fell in the
age group 30-39. All our subjects were graduate students at
UCI, two of them were also professional software developers

Table 3: Time to task completion and success rate for each
technique and task.

[ Technique [ Task [ Avg. time | % Success |
[ Conventional [ Task 1 ] 6:04 [ 375% |
| History Slicing | Task 1 | 3:21 [ 100% |
[ Conventional [ Task 2 ] 7:34 [ 375% |
[ History Slicing | Task 2 | 3:15 | 100% |
[ Conventional [ Task 3 ] 9:57 [ 0% |
[ History Slicing | Task 3 | 5:19 [ 625% |

and one was also a professional software tester. Thirteen
subjects were majoring in Informatics, ten were majoring
in Computer Science and one was majoring in Computer
Engineering. Table 2 contains the years of experience that
subjects reported to have with IDEs and revision control
systems.

The experiment was structured as such for each subject:

1. We trained the subject on how to use the chosen treat-
ment technique.

2. We presented the subject with the randomly chosen

task and the source on which it will be performed.

We asked the subject to answer the chosen task.

4. We repeated Steps 1-3 for the other treatment tech-
nique and another randomly chosen task.

®

Each subject was asked to perform two tasks with two
techniques. Twelve of the 24 subjects used the Conven-
tionally Assisted approach first and the History Slicing with
Context approach second, and other twelve used the tools in
the opposite order. Each of the three tasks was assigned to
an equal number (16) of subjects, and each technique was
used on each task in equal numbers — i.e., each task was
answered with each tool eight times. In other words, every
combination of treatment techniques, task, and task order
was performed in equal numbers.

To encourage subject participation, we offered a small
base monetary compensation. Additionally, we offered a
small additional compensation to encourage speed and cor-
rectness. The subjects were given a maximum of ten minutes
to answer each task that they were given, regardless of the
treatment technique. A correct answer was rewarded with
a small additional compensation, and the earlier that the
answer was given determined the size of that small addi-
tional compensation. For example, a correct answer given
at minute 5 was rewarded more greatly than a correct an-
swer given at minute 10. This compensation structure was
implemented equally for both techniques to encourage the
subjects to answer quickly and accurately.

6.2.3 Results

For each technique-task combination, we averaged the time
that all subjects took to perform the task, and we calculated
the percentage of subjects whose answer was correct. Table 3
contains the results that we obtained for all technique-task
combinations.

As we can see in this table, the subjects who used the
History Slicing with Context technique could perform any
of the tasks in around half the time that was needed by the
subjects who used the Conventionally Assisted technique.
We performed a paired t-test with 7 degrees of freedom over
the times that we captured for subjects performing the tasks.
The difference in time needed to perform the tasks for the
two different techniques was statistically significant, with



p values of 0.02, 0.01, and 0.00006 for Tasks 1, 2, and 3,
respectively.

In the specific case of Task 3, the differences in time are
so high because most subjects using the Conventionally As-
sisted technique for Task 3 were unable to answer it in the
maximum ten minutes allotted. Only two subjects provided
an incomplete, incorrect answer when they had 15 seconds
and 5 seconds left, respectively. In a post-experiment dis-
cussion, some of the subjects mentioned that, in real life,
they would have just given up on performing Task 3 be-
fore spending ten minutes on it by using the Conventionally
Assisted technique.

Regarding success rate, the subjects who used the His-
tory Slicing with Context technique were in general 62.5%
more likely to provide correct solutions to any of the tasks
than those subjects who used the Conventionally Assisted
technique. We also performed a paired t-test with 7 degrees
of freedom over the correctness of the answers provided by
our subjects. The difference in correctness of the answers for
the two different techniques was also statistically significant,
with a p value of 0.01 for each task.

We observed multiple reasons why our subjects did not
provide a correct answer for each question when using the
Conventionally Assisted technique. For Task 1, some sub-
jects only reported information about the last change to each
line of interest, instead of their whole history; some other
subjects only reported information about the header of the
method of interest, instead of all its lines; and another sub-
ject checked all revisions of the file one by one, manually
checking which revisions affected the lines of interest, and
ending up providing a partial answer. For Task 2, some
subjects interpreted changes in lines as additions; and other
subjects ran out of time. For Task 3, all subjects ran out
of time long before even composing a small portion of the
correct answer. We also observed a common phenomenon to
all tasks when using the Conventionally Assisted technique:
subjects very frequently lost track of where in the file they
were, and they needed to backstep to remind and re-focus
their search.

When subjects used the History Slicing with Context tech-
nique, they only provided incorrect answers for Task 3 —
that is, for Tasks 1 and 2, all of our subjects provided the
correct answer, and a majority of the subjects provided cor-
rect answers to Task 3 (despite zero success for the other
technique). For the 37.5% that incorrectly answered Task 3
with history slicing, we observed the following reasons for
their failure: One subject did not explore the beginning
of the timeline, missing the first revision. Another subject
rushed and explored only the latter half of the timeline. An-
other subject only explored a small subset of the timeline
because she thought that her partial view was complete —
the zooming function did not refresh the image until the
button of the mouse was released, causing her to think that
her zoomed-in view contained the whole timeline.

6.3 Summary of Results

Considering the results from both Experiment 1 and 2, we
now answer our research questions specified in Section 6.

To research question RQ1, we assess that automating the
computation of history slices greatly reduced the problem
space needed to be examined by the developer. Experiment
1 confirmed this and found multiple orders of magnitude in
savings by automating the history slice computation.

To research question RQ2, we assess that the size of the
slicing criterion did, indeed, affect these reductions: the
larger the slicing criterion, the larger the cost in its compu-
tation. However, the cost increases are minimal, especially
when considering the automated approaches. Also, the frag-
mentation of the slicing criterion does not affect the cost.

To research questions RQ3, we assess that the practical
benefits of the automated history slicing had profound in-
fluence on both the speed and correctness of the users at-
tempting to solve the code-evolution tasks. The users offered
their answers significantly more quickly with CHRONOS, and
even so, their answers were correct significantly more often.

Overall, we find these results as strong evidence that the
task of computing history slices is a non-trivial task for de-
velopers to compute on their own with current toolkits.

7. THREATS TO VALIDITY

An external threat to the validity of our evaluation is that
our results may not hold for other codebases or users. De-
spite the fact that we studied only one codebase, AspectJ,
we do not consider this a significant threat. The main factors
that affect history slicing are the codebase’s age and the size
of the slicing criterion, regardless of the nature or function-
ality of the codebase. We experimented with the size of the
slicing criterion and found an effect that easily scales with
criteria size. And, given the random selection of 4,000 slic-
ing criteria, history slices were computed on files that were
brand new, as well as other files that were nearly a decade
old. Regardless of the age of the code sliced, CHRONOS com-
puted quickly (the maximum was 30 seconds in our unop-
timized tool). Moreover, older codebases and larger crite-
ria will likely affect the conventional SCM approaches much
more than the automated history-slicing technique.

Another external threat to validity is that our user study
in Experiment 2 does not study people who are already fa-
miliar with the code base, and thus, its results may not
generalize to such more experienced developers. However,
we believe this factor to be insignificant because the same
experience level was brought to both approaches. We expect
that greater experience would assist the more automated ap-
proach because its results require more interpretation and
application of experience, whereas the manual approach re-
quires more tedium. Nevertheless, in the future, we plan to
evaluate with in-vivo field studies.

An internal threat to validity is that CHRONOS, our im-
plementation of history slicing, uses a textual line map-
ping technique, which may not always identify the correct
line equivalence in between revisions, e.g. when a method
is moved to another file. However, this limitation affects
both CHRONOS, and the manual approaches to history slic-
ing, since traditional SCM tools do not provide any mecha-
nism for tracking movements of code in between files. As a
consequence, we believe that this limitation does not affect
the results of our experiments. Moreover, history slicing may
address this limitation because its approach allows other line
mapping techniques [e.g., 7, 16].

A threat to construct validity is that in Experiment 1,
we measured developer expense in terms of the number of
lines that need to be examined. While we use the metric
of the number of lines to be examined as a proxy measure
for developer effort, we posit that it is actually indicative of
the amount of effort that would be needed by a developer
— more lines will require the developer to inspect those



lines, leading to greater effort. Regardless, while Experiment
1 allowed us to compute a great number of history slices
(16,000), we intentionally conducted Experiment 2 to allow
us to determine if the proxy measure of effort manifests for
real developers on real code-evolution tasks.

8. RELATED WORK

Existing research into analyzing and presenting code his-
tory follows two general directions that we will describe here:
(1) analyses to trace history through revisions, and (2) user
interfaces to access these histories.

Girba et al. [12] presented an evolution meta-model to
represent the history of source code artifacts at multiple lev-
els of granularity (e.g. class, method, attribute). To model
the history of source code at the level of individual lines of
code, Zimmermann et al. [33] proposed annotation graphs.
While similar to the history graphs defined herein, blocks of
changed code (i.e., modification hunks) are undifferentiated
in their historical evolution due to the limited granularity of-
fered by diff, on which they are built. To address the prob-
lem of modification hunks, multiple researchers proposed
line-mapping techniques. Canfora et al. [5] first perform
an inexact difference (like the annotation graph approach)
and then further refine blocks of code using a distancing al-
gorithm among the constituent lines. Chen et al. [6] and
Williams and Spacco [32] propose a similar approach us-
ing a combinatorial optimization algorithm to refine blocks.
Reiss [27] proposed a set of line mapping techniques and per-
formed an empirical comparison of them. Other researchers
proposed more sophisticated algorithms by performing the
mapping over models of the program [e.g., 2, 24] allowing the
detection of moved code [e.g., 7, 16] or providing techniques
for specific domains [e.g., 8]. In this work, we leverage their
results to implement our own line-mapping technique that
incorporates aspects drawn from each. Moreover, the con-
cept of history slicing applies to any line-mapping technique.

To provide interfaces to code history, some authors pre-
sented visualizations of the evolution of code at the system
level [e.g., 13, 20, 28]. At the file level, industry-standard
SCM systems provide functionalities that allow for a user
to access course-grained whole history information (such as
cvs log) or fine-grained history information that is limited
to a pair of revisions (such as svn diff). In addition, they
allow for a functionality (e.g., annotate) that presents a sin-
gle revision number for each line of code to represent its
most recent change. Such limited functionality leaves much
of a traversal-of-the-history effort to the labor of the de-
veloper. Bradley and Murphy [4] augment the information
presented by such conventional SCM tools by making in-
formation, such as the date and author, available for each
line of an annotate query. Hassan and Holt [14] and Holmes
and Begel [15] propose techniques that provide whole-history
information, but at the level of granularity of a single pro-
gram method, without details for the lines therein. History
slicing, in contrast, targets a different problem: allowing a
developer to view deep history evolution across any number
of revisions for any block of code in any number of files, and
to be able to draw inferences from the patterns seen.

9. CONCLUSIONS AND FUTURE WORK

In this paper, we present an approach, history slicing for
assisting code-evolution tasks that involve the exploration of

source-code history. This approach enables the extraction
of all revisions and lines of code that are related to a set of
lines of interest. We define the concept of a history slice as
this resulting set of lines across multiple revisions, and their
mapping between revisions. History slices can be used to
efficiently and accurately solve software-maintenance tasks
that require knowledge of the code evolution.

History slicing has four key benefits over conventional
history-exploration tools that are included with SCM sys-
tems and traditional add-on user interfaces to them: (1) His-
tory slicing can drastically reduce the amount of information
that a developer would need to examine in order to trace the
history of a set of lines of code; (2) History slicing enables
the computation and representation of any number of revi-
sions, whereas conventional tools primarily perform pairwise
differences; (3) History slicing directly supports tracing of
the history for any arbitrary set of lines of code, regardless
of whether they are contiguous or fragmented, in a single
file or in multiple, and in a single revision or across multi-
ple revisions; and (4) The presentation of the history slice
can enable users to recognize patterns in the evolution and
changes to the constituent lines and files.

We present the history-slicing approach as a framework
of multiple constituent steps, each of which are configurable
with multiple possible techniques. We also present our in-
stantiation of this framework to implement our technique in
a prototype history-slicing tool, CHRONOS.

We performed two experiments, using CHRONOS, to eval-
uate the merits of history slicing. The first experiment in-
volved the automatic computation 16,000 history slices with
various levels of automation and various sizes of slicing crite-
ria. The results of this experiment show that history slicing
can drastically reduce the amount of information that a de-
veloper would need to examine to trace the history of a set
of lines of code. We found savings of three orders of mag-
nitude in the lines to be examined by the developer for the
fully automated history slicing over the baseline.

The second experiment involved actual users performing
code-evolution tasks to determine the practical benefits of
history slicing. The results of this study show that the re-
duction of the information that needs to be examined trans-
lated to actual benefit to users. In addition, the experiment
demonstrated the practical benefits of the ability to repre-
sent several revisions in a single view, as well as viewing
change patterns among code in multiple files. The users
could solve their tasks correctly more than twice as often
with history slicing over conventional tools, and moreover,
could give those correct answers in about half the time.

While the results of our experiment are quite positive,
more experiments are necessary. We will conduct more ex-
periments using other codebases and user subjects to en-
sure generalizability. We will also explore how different line
mapping techniques affect our results. In addition, we will
explore the tasks that can be assisted by coupling history
analyses with traditional program analyses — for example,
viewing the recent history of lines that are identified as faulty
according to a fault-localization technique.
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