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Abstract—Crowdsourced software testing has been shown to
be capable of detecting many bugs and simulating real usage
scenarios. As such, it is popular in mobile-application testing.
However in mobile testing, test reports often consist of only some
screenshots and short text descriptions. Inspecting and under-
standing the overwhelming number of mobile crowdsourced test
reports becomes a time-consuming but inevitable task. The pau-
city and potential inaccuracy of textual information and the well-
defined screenshots of activity views within mobile applications
motivate us to propose a novel technique to assist developers
in understanding crowdsourced test reports by automatically
describing the screenshots. To reach this goal, in this paper,
we propose a fully automatic technique to generate descriptive
words for the well-defined screenshots. We employ the test reports
written by professional testers to build up language models.
We use the computer-vision technique, namely Spatial Pyramid
Matching (SPM), to measure similarities and extract features
from the screenshot images. The experimental results, based on
more than 1000 test reports from 4 industrial crowdsourced
projects, show that our proposed technique is promising for
developers to better understand the mobile crowdsourced test
reports.

I. INTRODUCTION

Crowdsourced techniques have been widely used to resolve

various software engineering tasks, e.g., testing [7], develop-

ment [12] and design [11] Especially, for software testing,

compared with conventional methods, crowdsourced testing

is able to simulate real usage scenarios and provide real

users’ feedbacks. Thus, it is widely adopted to test mobile

applications, which need rapid development-and-deployment

iterations and support diverse mobile platforms.

Typically, when conducting mobile testing, crowd workers

are required to submit their feedback in the form of test
reports, which may contain various kinds of information, such

as text descriptions, screenshots, voice record, and operation

videos. To understand these test reports, developers need to

diagnose these test reports. However, because crowdsourced

testing often involves a large number of crowd workers, and

as such, results in an overwhelming amount of test reports,

diagnosing and understanding these reports becomes a time-

consuming but inevitable task [6].

To improve the efficiency of diagnosing test reports,

software-engineering researchers have proposed many techni-

ques. In almost all such techniques, the test reports are cap-

tured and analyzed based on their textual similarity (e.g., [6],

[8], [10], [18], [20]–[22]) or their execution traces (e.g., [4],

[5], [16], [24]). However, these two categories of information

are often insufficient or unavailable in crowdsourced mobile

testing. While execution traces are hard to collect, Zhang et
al. find that the text description of mobile application bug

reports are often shorter than the desktop software [26].

This fact fundamentally disables or impedes the applications

of these conventional test-report management techniques on

crowdsourced mobile testing.

In this paper, we present a method to make the test reports

with rich screenshots and insufficient text descriptions easier

to understand and also support textual analysis among multiple

test reports to understand trends in the bugs being reported.

The goal of this approach to generate descriptive keywords

for the screenshots of crowdsourced mobile test reports. This

approach is a fully automatic learning-based technique to assist

developers to understand crowdsourced mobile test reports

which are often lacking sufficient accurate text descriptions

but are rich in screenshots. For the screenshots analysis, we

employed the Spatial Pyramid Matching (SPM) [13] technique

to measure the similarity of screenshots and apply natural-

language processing techniques to analyze the text descriptions

of the well-written test reports to get the weighted keywords.

Further, with weighted keywords and similarity matrix, we

cluster the screenshots and further build language models

for each of these image clusters. Based on these language

models, we can generate descriptive keywords for the unseen

screenshots to assist developers in understanding the test

reports.

The main contributions of this paper are as follows:

• We propose an image-understanding-based technique to

generate descriptive keywords for the screenshots in the

crowdsourced test reports. To the best of our knowledge,

this is the first work to generate descriptive keywords

for screenshots to assist developers to diagnose and

understand crowdsourced mobile test reports.

• To validate our technique, we collaborated with the

largest crowdsourced testing platform of China, Baidu
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Crowd Test1. We conducted a preliminary experiment

using our technique on four industrial crowdsourced pro-

jects. The experimental result shows that our technique

can reach a high precision, as well as recall, for the

generated descriptive keywords.

II. MOTIVATION

With the increasing popularity of mobile devices, ensuring

the quality of mobile applications has become a crucial

software engineering task. On mobile devices, images have

played a crucial role in sharing, expressing and exchanging

information. Regarding software testing, Zhang et al. [26]

found that the test reports of mobile applications contain much

shorter text descriptions and more screenshots in comparison

with the test reports of desktop software. Reporters prefer

taking screenshots of the well-defined activity views of these

applications rather than inputing long paragraphs to describe

bugs.

For the prevalent mobile testing method, crowdsourced

testing, even though taking screenshots simplifies the pro-

cedure of submitting test reports, the shortage of text des-

cription brings difficulties to developers in comprehending

these reports. When diagnosing these mobile crowdsourced

test reports, to understand the bugs and reproduce them,

developers often need to read and analyze the contents ma-

nually, including the bug description, operations, screenshots,

and environment information so on. In this procedure, these

screenshots are helpful for developers to locate the bug on

the activity level rapidly, but it is hard to reproduce the faults

based on insufficient the descriptive words. Further, one major

goal of crowdsourced software testing is to get the feedbacks

from diverse usage settings. Thus, the crowd workers may

have different knowledge, background, use habit, and software

and hardware configurations. This fact makes the quality of

descriptions of crowdsourced test reports varying widely. The

poorly-written and inaccurate descriptions may be difficult to

understand or misleading for triagers. The cognitive gaps be-

tween developers and bug reporters bring difficulties to fixing

software bugs. Thus, automatically retrieving information from

these screenshots and generating descriptive words to present

high-level understanding of the bugs are helpful for assisting

developers in processing these test reports and reducing the

cost.

III. APPROACH

A. Preliminary

For crowdsourced software testing, various forms of multi-

media information exist in test reports, such as voice messages

and operation videos. Among these kinds of information, text

description and screenshots are the two most widely used. In

this paper, we focus on analyzing the content of screenshots

to generate descriptions for them to assist software developers

to comprehend the test reports. We use and analyze only

those two parts of the test reports, the textual description

1http://test.baidu.com

and the set of screenshots. In other words, the test report set

TR(r) = {tr(Si, Ti)|i = 0 . . . n}, in which, S denotes the

screenshots (i.e., images) and T denotes the text describing the

bug and the operation steps. Note that each test report often

contains more than one screenshot, i.e., for the screenshot set

Si of test report tri, we have Si = si1, si2, . . . , sim, in which,

sij denotes the jth screenshot in test report tri. In this paper,

we aim at training language models from well-written test

reports to generate descriptive keywords for screenshots.

Fig. 1: Model-Building Phase

B. Technique Framework

The technique framework consists of two major phases: a

model building phase and an application phase. In the model

building phase, we aim at employing the text description of

training test reports and building the language models for the

training screenshots, and in the application phase, the major

goal is to employ these language models to generate proper

descriptive words for the new screenshots. In this section, we

introduce the details of our technique framework.
1) Model-Building Phase: The model-building phase is

composed of the following sub-steps: (1) analyzing text des-

criptions of well-written test reports; (2) extracting features

from screenshots and clustering similar screenshots; and (3)

building language models for each of the images clusters.

Fig. 1 depicts this model-building phase.

Text processing. In software-engineering research, natural-

language-processing techniques have been employed to assist

various tasks. In our technique, we leverage the text des-

cription of the well-written test reports to build a corpus

of descriptive words. The text processing consists of the

following steps: (1) tokenization, (2) filtering, (3) keyword-

vector building.

In our technique, we employ the Jieba2 tool, a Python-

based segmentation system, to tokenize the text description.

We input the text information, which contains the description

of the bugs and operations, of each mobile crowdsourced test

report into Jieba and obtain a token list and corresponding

part-of-speech tagging. However, this preliminary raw outputs

also contain noise, such as the typos and uncommon words. To

build up the language models that are capable of generating

keywords to describe operations and situations, we need to

identify the keyword from the raw outputs. Prior studies show

that verbs and nouns are most important to reflect the content

of a document [17], [25]. Hence, we retained only verbs and

nouns as candidate keywords of test reports and filtered out

other words. To reduce the bias induced by stop words, we

2https://github.com/fxsjy/jieba
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also filter them out based on the ICTCLAS stop word list3.

After these two steps, we can obtain a word sequence for each

of the training test reports.

Screenshot processing. For mobile applications, each activity

view is designed to meet some functional requirement, and

almost all of the screenshots come from the activity view of the

mobile applications. This fact motivates us to group all of these

screenshots into several clusters and further build a language

model for each of these image clusters. To reach this goal, the

screenshot processing procedure consists of three fundamental

steps: (1) building feature histograms, (2) building a distance

matrix, (3) clustering similar screenshots.

First, because the screenshots provide not only the buggy

symptoms but also app-specific visual appearances, variable

resolution, and complex backgrounds, modeling the features

merely based on naive RGB values is not a proper approach

for our task. Thus, to address these challenges, we employ the

Spatial Pyramid Matching (SPM) algorithm [13] to extract

the scale-invariant feature transform (SIFT), which is known

to be highly accurate in matching image features [23], from

the screenshots. Based on the SIFT, our technique identifies

similar layouts and widgets from the screenshots. After we

obtained the feature histogram, we build a distance matrix

over the image set. In our technique, we employ the Chi-

Square distance metric to measure the dissimilarity between

each pair of images.

To group the screenshots into clusters, we conduct agglo-

merative hierarchical clustering on the image set. There are

two fundamental parameters influencing the clustering result

of this algorithm: the linkage type, which defines the method

of calculating the distance between clusters, and the threshold

for determining the stop point of clustering. We refer the

threshold value as α. One noteworthy point is that agglo-

merative hierarchical clustering algorithm can automatically

stop the clustering when the distance between all of these

clusters is larger than α. Thus, we can obtain the cluster set

meeting distance criteria instead of pre-specifying the number

of clusters.

Building Language Models. We present the process of buil-

Fig. 2: The Process of Building Language Model

ding a language model for one screenshot cluster in Fig. 2.

For each cluster, we identify the test reports that contain

the screenshots in the cluster, and then we take the keyword

3https://github.com/chdd/weibo/tree/master/stopwords

lists generated from the text descriptions of these test reports

as the inputs for the n-gram model. The n-gram model is

a probabilistic language model for predicting the next item

in a contiguous sequence, in the form of a (N − 1)-order

Markov model. Given the keyword lists, which come from

the test reports containing the similar screenshots, the n-gram

can build up the probabilistic language model for generating

the words with various context.

Additionally, all language models must address out-of-

vocabulary (OOV) words, which refer the words that had

a very low appearance frequency in the dictionary or the

database during the model-building phase. In our technique,

we set a threshold value X for identifying the OOV words.

We replace the words that occur fewer than X times in the

training set with the special symbol unk, and thereafter treat

unk like a regular word.

2) Application Phase: For each report of the testing data

set, we aim to generate words from the language models based

on only the screenshots. First, for each screenshot in the test

reports, we extract the SIFT feature for them and compute its

K nearest neighbors in the training screenshot set. Applying

the voting strategy on clusters of these K nearest neighbors,

we can identify the cluster that the testing screenshot belongs

to. Thus, for each test report we can identify the cluster

sequence and corresponding language model sequence based

on the screenshot list.

Because the n-gram language model is a kind of Markov

model in which the previous states determine the current state,

we employ the output of the previous one as the input for each

language model in the sequence; we input the start symbol

to initiate the generation. From each language model, we

sequentially generate at most 20 words.

IV. EVALUATION

We collaborated with the largest crowdsourced testing plat-

form in China, Baidu Crowd Test, to validate our technique.

The platform hires a large number of crowd workers to test

applications, and collects mobile crowdsourced test reports. It

provides us the crowdsourced test reports of four real mobile

applications. These reports have been manually inspected

and the professional testers have written operation steps and

descriptions for them based on the original description and

screenshots. It is worth noting that, in practice, professional
testers invest efforts to diagnose each test report because they

need to obtain a full understanding of the crowdsourced testing

result. The major goal of our technique is to automatically

generate a keyword list for the screenshots in all of these

mobile crowdsourced test reports based on some well-written

test reports and further improve the efficiency of diagnosing

individual reports. Thus, to evaluate our technique framework,

we conducted a ten-fold cross-validation over the test reports

that have the text descriptions written by professional testers.

Table I shows the detailed information of these applications.

All of these subjects are popular applications on the Android

market. #TR denotes the number of test reports, #S denotes

494



the number of screenshots, and #TRm denotes the number

of test reports that have more than one screenshot.

TABLE I: EXPERIMENTAL APPLICATION SUBJECTS

Name #TR #S #TRm

P1 Follower Wiki 184 331 103
P2 Jiajia Sport 273 336 221
P3 Cloud Driving School 288 366 279
P4 Hanan 311 452 295

Total 1056 1465 898

We employ precision, referred as P and recall, referred as

R, to evaluate our technique. In the test report of testing data

set TR′ = {tri}, yi denotes the predicted keyword list for

tri, and gi denotes the ground-truth keyword list. Then, the

precision and recall can be computed based on the following

equations.

P =
1

|TR′|
|TR′|∑

i=1

|yi
⋂
gi|

yi
;R =

1

|TR′|
|TR′|∑

i=1

|yi
⋂
gi|

gi
(1)

In our experiment, we employ the trigram and apply the

average linkage that defines the distance as the average dis-

tance between each instance in one cluster to every instance

in the other cluster. Further, we set the distance threshold

value α = 0.1, the lowest frequency threshold X = 2 and

the number of nearest neighbors K = 3. We conduct the

experiment 30 times and present the experiment results in the

Figures 3a and 3b. These two boxplots show that, for all four

projects, we obtain an average precision value more than 0.41

and an average recall value more than 0.35.

When analyzing these data, an important phenomenon

should be taken into consideration, there is a very low pos-

sibility that people use the same words to refer to the same

concepts. This phenomenon has been recognized and well-

studied by both the linguistic and natural language processing

researchers [9], [15]. For description generation techniques,

experiment result of the word-comparison based metrics may

vary given the ground truth that comes from different pe-

ople [19]. Thus, even though the average precision and recall

values are not so high in comparison with the reported results

of the classic classification-based techniques, in which these

values are commonly higher than 0.8, our technique that can

automatically generate 40% keywords of the manually written

descriptions is promising in improving the comprehensibility

of crowdsourced test reports.

V. RELATED WORK

Compared with natural language processing (NLP), which

aim at analyzing textual information and have been widely

applied to assist various software engineering tasks, image

analysis and understanding techniques are rarely investigated

and studied in software engineering domain. Cai et al. propose

the VIPS algorithm [1], which segments a web page’s screens-

hot into visual blocks to infer the hierarchy from the visual

layout, rather than from the DOM. Choudhary et al. propose

a tool called WEBDIFF to compare the page’s appearance

(a) Precision (b) Recall

Fig. 3: Experiment Results (averaged over 30 runs)

on screenshots of the web pages to identify cross-browser

issues automatically [3]. In [14], Michail et al. proposed a

static approach, GUISearch, to guide search and browsing of

its source code by using the GUI of an application. They

further proposed a dynamic approach to obtain an explicit

mapping from high-level actions to low-level implementation

by identifying execution triggered by user actions and visually

describing actions from a fragment of the application displayed

[2]. While all of these works employ image-understanding

technique to detect software bugs, our approach aims at impro-

ving the understandability of screenshots of test reports. Feng

et al. [7] proposed an image-understanding-based prioritization

technique to provide an efficient diagnosis order for developers

to process test reports. However, even though this method

enables the developers to identify bugs earlier, it does not

assist developers in improving the efficiency of diagnosing

individual test reports that contain only short-text descriptions

and screenshots.

VI. CONCLUSION

In this paper, we propose a framework to analyze the content

of screenshots to generate descriptions for them to further

assist software developer comprehension of crowdsourced test

reports. To our knowledge, this is the first work to propose

using image-understanding and n-gram techniques to assist

improving the efficiency of understanding crowdsourced test

reports.We present the preliminary experiment result based on

four real industrial mobile crowdsourced projects. The expe-

riement results show that our technique can reach a relative

high precision and recall regarding generating descriptions for

the images.

To further improve the performance and make this technique

mature, we will refine the language model and design the

novel ones. Additionally, further user studies and empirical

experiments are therefore necessary to investigate the impro-

vement for developers in comprehending the crowdsourced test

reports.
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