
Bridging Gaps between Developers and Testers in
Globally-distributed Software Development

Mark Grechanik
Accenture Labs & UIC

Chicago, IL 60601

drmark@uic.edu

James A. Jones
UC Irvine

Irvine, CA 92697-3440
jajones@ics.uci.edu

Alessandro Orso
Georgia Tech

Atlanta, GA 30332-0765
orso@cc.gatech.edu

André van der Hoek
UC Irvine

Irvine, CA 92697-3440
andre@ics.uci.edu

ABSTRACT
One of the main challenges in distributed development is ensuring
effective communication and coordination among the distributed
teams. In this context, little attention has been paid so far to co-
ordination in software testing. In distributed development environ-
ments, testing is often performed by specialized teams that operate
as independent quality assurance centers. The use of these centers
can be advantageous from both an economic and a software quality
perspective. These benefits, however, are offset by severe diffi-
culties in coordination between testing and software development
centers. Test centers operate as isolated silos and have little to no
interactions with developers, which can result in multiple problems
that lead to poor quality of software. Based on our preliminary in-
vestigation, we claim that we need to rethink the way testing is per-
formed in distributed development environments. We then present
a possible research agenda that would help address the identified
issues and discuss the main challenges involved.

1. INTRODUCTION
Software development is increasingly distributed. In the last two

decades, we have observed a clear shift from a purely centralized
to a highly distributed software development approach. Many soft-
ware companies have teams spread all over the globe that produce
software through remote collaborations [1]. One of the main chal-
lenges in distributed development is ensuring effective communi-
cation and coordination among such teams. Failure to do so can
result in incorrect assumptions about separately developed compo-
nents and divergence between the actual and specified behaviors
of these components. Researchers and practitioners alike recog-
nize these problems and have started investigating solutions to them
(e.g., [12, 18, 22]). Most of the existing coordination methods, pro-
cesses, and tools, however, tend to focus on requirements gathering,
design, and coding activities only, while coordination in testing is
mostly overlooked.

In distributed development environments, testing is often per-
formed by Software Test Centers (STC)—teams specialized in test-
ing and Quality Assurance (QA) that tend to operate in isolation,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$5.00.

with little to no interactions with development teams. In some
cases, STCs are completely external to an organization, which is
a trend that has become increasingly prominent in the last decade.
In such cases, STCs are independent entities that offer specialized
testing and QA services to software development organizations. (It
is worth noting that test outsourcing is today a $25B marketplace
with a 20% yearly growth rate, which makes it the fastest growing
segment of the application services market [6].)

While many reasons exist as to why organizations rely on STCs,
two are most prevalent. The first reason is an economic one. Group-
ing testing expertise within one team enables companies to reduce
testing costs through the use of workforces from geographic re-
gions with lower labor cost. Moreover, the centralization of testing
capabilities in specialized centers can help reduce the overall num-
ber of testers for organizations that use the services of these cen-
ters. In the case of external STCs in particular, testing outsourcing
allows organizations to completely avoid harboring the cost of full-
time testing staff and tools. The second reason for using STCs is
that the use of specialized testers can establish additional confi-
dence in a software system; in the absence of a close relationship
between developers and testers, software is more likely to be tested
in an unbiased, thorough way. When software is developed by a
third-party consulting organization for a customer, the use of an
external STC may even be requested by the customer, who may
require QA to be performed by a separate, trusted STC company.

These benefits, however, are often offset by severe difficulties in
effectively integrating STCs into the overall software development
process, leading to critical shortfalls in how and how well a typical
software system is tested. In an informal study of STCs, we have
in fact observed the occurrence of a variety of problems caused by
the lack of communication and coordination between STCs and de-
velopment teams. For instance, developers often complain that the
lack of insight into the testing results is causing inefficiencies in
their development work. Another example is the common case of
testers that misclassify features as faults and report them to devel-
opers, which also causes inefficiencies on both sides.

Combined, all these issues led to test practices that were sup-
posed to work well on paper, but were not nearly as efficient and
effective as expected in practice. In fact, in many cases it was
questionable not only whether the anticipated economic and qual-
ity benefits expected from the use of STCs were indeed achieved,
but even whether the final result was not actually to pay a higher
cost for a lower quality software.

In this paper, we discuss the issues related to the use of STCs
in distributed development environments in detail to motivate our
claim that the way we perform testing in such environments today
is highly inadequate. Using the results of our preliminary investi-

gation, we show how the lack of coordination between the different
parts of a distributed organization, and in particular between STCs
and developers, is hindering the production of high quality soft-
ware. It is important to notice, however, that the solution to these
problems is not to eliminate the independence of development and
verification teams, whose importance is universally recognized. We
therefore propose a research agenda that can help preserve such in-
dependence while helping to address the shortcomings of existing
approaches to testing in distributed development environments.

The first objective of the proposed agenda is to bridge the gap
between software development and software testing teams that are
geographically distributed through the use of suitable software en-
gineering tools and practices. Another requirement for the research
is to validate the newly defined tools and practices on real testbeds
that are truly representative of real scenarios. The agenda also con-
siders educational issues and the problem of better preparing to-
day’s students for operating in a globally distributed software engi-
neering context by extending the software engineering curriculum.
We believe that this research agenda has the potential to address
coordination, communication, and cultural issues between devel-
opers and testers, and can ultimately improve the overall quality of
the produced software.

2. RESEARCH ISSUES AND CHALLENGES
In this section, we describe the preliminary investigation that we

performed and that supports our claims that there is a need for new
approaches to testing for distributed development. We start by in-
troducing the scenario for our investigation and illustrating a few
relevant examples from this scenario. We then discuss our overall
findings and the main issues that we have identified. These issues
are the starting point for the definition of the research agenda pro-
posed in the subsequent section of the paper.

2.1 Scenario
In our investigation, we target a scenario that involves a large in-

surance company whose name we cannot reveal for confidentiality
reasons. (Moreover, knowing the name of the company would not
change the nature or the validity of our results.) The scenario in-
volves three different kinds of actors: testers, customers, and devel-
opers. Testers correspond to all of the members of an STC, which
include test managers, test automation engineers, and novice testers
who create and run integration, system, and acceptance tests (but no
unit tests). Customers are individuals, groups, and companies that
buy software products and perform acceptance testing of this prod-
uct. Finally, developers include project participants who architect,
design, and implement software, as well as perform unit testing.

The context for the scenario is the creation of a large-scale soft-
ware product: a new enterprise claim system that contains more
than 7MLOC and whose development took ten years and involved
about 700 developers and an STC consisting of 300 testers. Devel-
opment and testing teams are geographically separated and, as it is
typical in these cases, the communication between the STC and the
developers is limited.

One important aspect in scenarios of this type is that the different
actors have different, and sometimes conflicting goals. Customers
are interested in obtaining products with all the needed features, at
a low price, and as early as possible. The goal of the testers is to
find and report as many bugs as possible in the allotted time and
within the allocated budget. Finally, the developers’ goals are to
produce and deliver the product expected by the customer with as
few defects as possible, at the lowest possible cost, and on time.

Another important aspect for the scenario is the interaction be-
tween software developers and the STC, which is cyclical. During

the implementation of a new release, usually little to no interac-
tion takes place. However, once a release candidate is finalized and
shipped to the STC, a period of intense interaction begins. Test-
ing starts, and potential faults are reported to the developers, which
in turn consider these reports and implement fixes when needed.
At the same time, new revisions of the software are continuously
shipped to the test center for re-testing, usually right until a release
is made official and becomes available to customers.

In our scenario, and in many large-scale software developments
in general, interaction between developers and the STC also de-
pended on the stage of development. During the rapid creation
stage (RCS), which produces a few initial prototypes, the main
work within the STC is to prepare the scaffolding and infrastruc-
ture needed to test the system at hand. Very few to no tests are
developed in this stage because system requirements are typically
highly unstable and integration and system tests would have to be
changed constantly. The next stage is the stabilizing functionality
stage (SFS), whose main goal is to satisfy the set of use cases col-
lected in the previous stage through prototyping. In this stage, the
STC is increasingly used, as releases are more stable, and longer-
lasting tests can be developed. Finally, the Maintenance and Evo-
lution Stage (MES) is a stage in which little new functionality is
added, and the software is mainly modified to fix existing bugs and
implement small functionality extensions. In this stage, STCs are
used extensively to perform regression testing and, eventually, ac-
ceptance testing.

2.2 Issues
The scenario we just presented demonstrated a number of chal-

lenges for performing testing in a distributed software development
environment. In this section, we describe the main issues that we
identified among testers, developers, and customers. Note that, al-
though we describe these issues independently, in practice they are
often intertwined—multiple issues occur simultaneously and fur-
ther complicate the software development.

1. In RCS, although few/no test cases are produced, it is important
that STCs are kept up to date on the evolution of the specs, which
does not always happen. As a consequence, they may develop
wrong infrastructure.

2. Developers are typically under pressure to deliver a working
product and perform little to no unit testing, especially when
the code must be delivered to an external testing organization
by a due date. As a consequence, the code often contains many
shallow bugs that waste the STC’s resources and can prevent the
discovery of more relevant or subtle bugs.

3. As developers continue modifying existing components, it is im-
portant to notify the STC in time about these modifications, so
that testers can adjust existing tests accordingly. Unfortunately,
this also rarely happens, mainly for scalability reasons. Consider
a situation where several hundreds of developers modify existing
code that affects test cases that are designed and used by a sim-
ilar number of testers. Simply sending testers information on
each low-level modification to the source code could easily re-
sult in millions of notification per day. Moreover, most of these
notifications would go to testers who do not actually work on the
code involved in the modification.

4. In RCS and early SFS, communication is almost entirely uni-
directional from developers to testers: developers produce code
and send it to testers for testing. However, in later phases of
SFS, it is important to have a two-way communication channel
between developers and testers. Not only should testers receive
early messages about changes in source code that may break ex-
isting test cases, but also developers should be notified about the

(relevant) results of testing. A challenge we observed in this con-
text is the difficulty in identifying the developer(s) who worked
on the code where bugs were found, and to provide them with
enough information to reproduce the failure without assembling
a testbed.

5. During SFS and MES, when new progressive or corrective changes
are made to the software, the cooperation between developers
and testers becomes more active, cyclical, and needs to be more
immediate. Test suites that require long-running times, manual
set-up, or human interaction considerably slows down the pro-
cess of bug finding and fixing.

6. The development organization (and often the STC as well) has
little insight into how thoroughly a software system has been,
is being, and should be tested. Moreover, with development
schedules typically slipping, actual testing time is significantly
squeezed. This limited time should be used as effectively as pos-
sible, whereas we observed that often set-up time accounts for
as much as 40% of an STC effort. Classical questions of test
coverage and test effectiveness arise in this case, but they must
now be addressed in the context of two organizations that inde-
pendently perform large amounts of parallel work, with intricate
and changing dependencies crossing team/organizational bound-
aries.

7. Features added, modified, or removed by the development or-
ganization are often erroneously reported as faults by the STC.
Tests must be up-to-date with the functionality of the system,
which is often problematic in this context. First, little com-
munication takes place between developers and STC as to what
changed in the system. Second, because many test cases are kept
as simple textual instructions for testers (e.g., in a spreadsheet),
updating them is a tedious and error-prone process that involves
the translation and mapping of feature changes to these instruc-
tions (and that often simply does not happen).

8. Because development centers and STCs typically reside in dif-
ferent geographical locations, often many time zones away, im-
plicit and explicit boundaries arise between them [7, 8]. More-
over, cultural differences exist, practices vary, and it is generally
difficult to identify the right interlocutor on the other side of the
center boundary. As a result, communication that should take
place may incur costly delays or may not take place at all.

2.3 Limitations of Existing Testing Approaches
The issues that we have described are not all new, and some

of them occur also in more traditional testing contexts (albeit to a
smaller degree). It is therefore not surprising that a variety of test-
ing strategies have emerged to try to address these issues. Unfor-
tunately, these existing strategies often do not work in this context,
as we now briefly discuss.

Source code sharing. There is a common belief that simply shar-
ing the source code between developers and STCs could address
most issues of communication and coordination. While this may
be true in some cases, it is not a general solution. First, purely
looking at the source code is not enough to understand changes,
their effects, and the reasons behind them, especially for large
and complex software. Second, in the case of external STCs,
sharing source code is simply not an option due to trust issues
and often contractual requirements between the customer and the
development organization.

Use of continuous testing. A common strategy to address some of
the issues we have highlighted is to use continuous integration
[2, 9, 16, 23], which involves immediately integrating changes

into the main system, continuously updating tests, and running
all (old and new) test cases immediately to verify that changes
did not break the code base. It is in general infeasible to im-
plement this kind of approach in our context; every change that
results in a regression error would require interactions between
the developers and the STC, which would reintroduce many of
the problems listed above.

Addition of more testers. Despite the adage “given enough eye-
balls, all bugs are shallow,” the simple addition of more testers
is generally insufficient to find all bugs in a system. In partic-
ular, some bugs only manifest as failures after removal of other
bugs, which means that the debugging process cannot be fully
parallelized [11]. The prevalence of this phenomenon was con-
firmed during our discussions with test managers and engineers,
in which they described many situations where shallow, rela-
tively easy-to-find faults caused most of the failures observed
early and prevented testing progress until fixes were made.

3. RESEARCH AGENDA
We argue that new approaches must be developed to suitably ac-

count for the issues in testing within distributed development envi-
ronments that we discussed in Section 2.2. We discuss an initial set
of relevant research directions that target such issues and can lead
to the development of such approaches.

Traceability among different software artifacts. In order to de-
termine what high-level requirements are tested, different soft-
ware artifacts should be traced to one another. For instance,
traceability techniques and methods allow stakeholders to par-
tially address Issue 1 by connecting tests with source code, ele-
ments of models, and requirements, thereby maintaining contin-
uous links that can be used to assess change propagation through
software.

Precise detection of semantic interference. As we discussed in
Issue 1, RCS is characterized by many developers updating code
concurrently, thus potentially interfering with one another. De-
tecting semantic interference with a high degree of automation
and precision is vital to resolving latent problems that are in-
troduced by concurrent changes made to software artifacts that
depend on one another [21].

Aggregation/distribution of change information for scalability.
When hundreds of programmers make low-level changes to the
source code, change information should be (1) clustered into
higher-level change notifications and (2) sent only to the relevant
testers (see Issue 3). For instance, formal concept analysis is a
principled way of automatically deriving an ontology from a col-
lection of events with properties that could be used to compactly
describe code modifications. Also, publish-subscribe systems
could be used for an effective distribution of change informa-
tion [4].

Predicting bugs via mining of changes. As programmers commit
their changes to the source code, the information provided ear-
lier by testers in bug-tracking system could be used to identify
and flag potentially problematic changes. Doing so would aid in
addressing Issue 3.

Regression test selection and prioritization. Regression testing is
typically an expensive activity, due to the cost of rerunning po-
tentially large test suites every time the code is changed. More-
over, ensuring that the test suite is adequate for the changed code
is challenging [10]. Test selection, augmentation, prioritization,

and minimization techniques that can work in a distributed devel-
opment environment, especially in cases where the source code
is not available to testers, can help addressing Issue 5.

Achieving test coverage faster. Test coverage is a commonly used
software quality metric [24] because it is an objective, albeit not
perfect [14, page 181], indicator of testing thoroughness. Specif-
ically, achieving higher test coverage is correlated with the prob-
ability of detecting more defects [3, 15, 19, 20] and increasing
software reliability [5, 17]. The faster testers reach a given cov-
erage goal, the lower is the cost of testing [13], as testers can
concentrate sooner on other aspects of testing (e.g., performance
and functional testing). Developing approaches for achieving
higher test coverage faster would therefore improve the effec-
tiveness of an STC and of the overall distributed development
process and help to address Issue 6.

Test partitioning. Large-scale applications have millions of test
input data that are used to create tests. Many of these input data
will lead to the same behavior of the application, resulting in
many hours of test time lost and reduced test effectiveness. It
is important to have algorithms and techniques that determine
how changes that are made by programmers may lead to effective
partitioning of test data, thus addressing Issues 5 and 6.

Test repair and reuse. Test engineers routinely create test scripts
to automate the testing process. These test scripts interact with
applications by calling methods of their interfaces. The extra
effort that test engineers put in writing such scripts is amortized
over multiple test runs. Unfortunately, releasing new versions of
applications with modified interfaces breaks the corresponding
test scripts, thereby decreasing the benefits of test automation.
Developing techniques and algorithms for automated test repair
would help address Issue 7.

Coordination and awareness. There is a need for approaches that
can raise awareness of past and ongoing activities/results among
the different actors. This is especially important in this context,
which is characterized by rapidly changing conditions that result
from a large amount of parallel, highly interrelated work. For in-
stance, we envision individual testers being provided with early
warnings of code changes that impact their test cases, so they can
appropriately prepare before a new revision is delivered. Change
information could also be used to identify parts of the system that
need extra attention. We believe awareness to be a key factor in
addressing many of the issues in Section 2.2.

Economics of collaborative software development. Traditional soft-
ware cost models are based on the assumption that everyone
involved in a software project is driven to make it successful
and agrees on the goals and methods to achieve success. How-
ever, different team participants view the ultimate success of the
project differently based on their personal goals. This is espe-
cially true in contexts that involve actors from different organi-
zations, as it is often the case in distributed development. We
believe that new sophisticated economic models are required to
analyze software projects as noncooperative games to (1) un-
cover hidden causes of failures of software projects and (2) sug-
gest ways to fix them. A careful investigation of these economic
factors of new software development models will be critical for
the success of highly distributed development practices.

Field studies. It is of paramount importance that approaches, tech-
niques, tools, and practices developed in the context of this re-
search agenda are assessed and evaluated in realistic, when not

real, scenarios. In this way, it will be possible to assess how the
proposed solutions can affect and benefit software development
practices, which would help evaluating them and promote their
adoption.

Education. Companies involved in software development are in-
creasingly engaged in a distributed engineering process aimed
to acquire specific expertise, human resources, and more cost-
effective services. The ability to engage in a such a technically
and culturally complex process will be key to these companies’
success. To enable such capability, it is crucial to develop an
engineering workforce that has an international perspective, has
experience collaborating with international partners, and under-
stands the difficulties of distributed software engineering (and
has the tools to overcome them). In particular, we need to in-
volve students in truly distributed software engineering projects
(e.g., by engaging our international colleagues and developing
joint courses with a project component). We believe that such
engineering projects will provide all participants with insights
on the problems of distributed development and testing, develop
the technical skills required to tackle them, and ultimately pro-
vide them with a rich cultural and technical experience.

Acknowledgments
This work was supported in part by NSF awards CCF-0916605 and
CCF-0725202 to Georgia Tech and NSF awards CCF-1017633 and
CCF-0916139 to the University of Illinois at Chicago.

4. CONCLUSION
Through our observations in the field and our preliminary inves-

tigation, we have identified a broad set of issues that can be tackled
by and benefit from research in several areas of software engineer-
ing. We believe that advances in addressing these issues can result
in more efficient and effective approaches for distributed software
development and testing, which will ultimately lead to better qual-
ity software and benefit all users of the software infrastructure.

5. REFERENCES
[1] W. Aspray, F. Mayades, and M. Vardi. Globalization and

Offshoring of Software. ACM, 2006.
[2] Beck. Test Driven Development: By Example.

Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

[3] X. Cai and M. R. Lyu. The effect of code coverage on fault
detection under different testing. In Profiles,ICSE 2005
Workshop on Advances in Model-Based Software Testing
(A-MOST, pages 1–7, 2005.

[4] M. Caporuscio, A. Carzaniga, and A. L. Wolf. Design and
evaluation of a support service for mobile, wireless
publish/subscribe applications. IEEE Transactions on
Software Engineering, 29(12):1059–1071, Dec. 2003.

[5] M.-H. Chen, M. R. Lyu, and W. E. Wong. An empirical study
of the correlation between code coverage and reliability
estimation. In IN PROCEEDINGS OF THE THIRD IEEE
INTERNATIONAL SOFTWARE METRICS SYMPOSIUM,
pages 133–141, 1996.

[6] Datamonitor. Application testing services: global market
forecast model. Aug. 2007.

[7] J. A. Espinosa, N. Nan, and E. Carmel. Do Gradations of
Time Zone Separation Make a Difference in Performance? A
First Laboratory Study. In Proc. of the International Conf. on
Global Software Engineering, pages 12–22, 2007.

[8] J. A. Espinosa and C. Pickering. The effect of time
separation on coordination processes and outcomes: A case
study. In Proceedings of the Hawaii International
Conference on System Sciences, 2006.

[9] M. Fowler. Continuous integration. /url-
http://martinfowler.com/articles/continuousIntegration.html,
May 2006.

[10] M. J. Harrold and A. Orso. Retesting software during
development and maintenance. In Frontiers of Software
Maintenance (FoSM 2008), pages 99–108, Beijing, China,
October 2008.

[11] J. A. Jones, J. F. Bowring, and M. J. Harrold. Debugging in
parallel. In ISSTA ’07: Proceedings of the 2007 International
Symposium on Software Testing and Analysis, pages 16–26,
New York, NY, USA, 2007. ACM.

[12] J. A. Jones, M. Grechanik, and A. van der Hoek. Enabling
and enhancing collaborations between software development
organizations and independent test agencies. Cooperative
and Human Aspects on Software Engineering, ICSE
Workshop on, 0:56–59, 2009.

[13] C. Kaner. Software negligence & testing coverage. In In
Proceedings of STAR’96, Jacksonville, FL, USA, 1996.

[14] C. Kaner, J. Bach, and B. Pettichord. Lessons Learned in
Software Testing. John Wiley & Sons, Inc., New York, NY,
USA, 2001.

[15] Y. W. Kim. Efficient use of code coverage in large-scale
software development. In CASCON ’03: Proceedings of the
2003 conference of the Centre for Advanced Studies on
Collaborative research, pages 145–155. IBM Press, 2003.

[16] C. Larman and V. R. Basili. Iterative and incremental
development: A brief history. Computer, 36:47–56, 2003.

[17] Y. K. Malaiya, M. N. Li, J. M. Bieman, S. Member,
S. Member, and R. Karcich. Software reliability growth with
test coverage. IEEE Transactions on Reliability, 51:420–426,
2002.

[18] A. Mockus and J. Herbsleb. Global software development.
IEEE Software, 18:16–20, 2001.

[19] A. S. Namin and J. H. Andrews. The influence of size and
coverage on test suite effectiveness. In ISSTA ’09:
Proceedings of the eighteenth international symposium on
Software testing and analysis, pages 57–68, New York, NY,
USA, 2009. ACM.

[20] P. Piwowarski, M. Ohba, and J. Caruso. Coverage
measurement experience during function test. In ICSE ’93:
Proceedings of the 15th international conference on
Software Engineering, pages 287–301, Los Alamitos, CA,
USA, 1993. IEEE Computer Society Press.

[21] R. A. Santelices, M. J. Harrold, and A. Orso. Precisely
detecting runtime change interactions for evolving software.
In Proceedings of the International Conference on Software
Testing, Verification and Validation (ICST 2010), pages
429–438, Paris, France, April 2010.

[22] A. Sarma, A. V. der Hoek, and D. Redmiles. The
coordination pyramid: A perspective on the state of the art in
coordination technology. Computer, 99, 2010.

[23] L. Williams, E. M. Maximilien, and M. Vouk. Test-driven
development as a defect-reduction practice. In ISSRE ’03:
Proceedings of the 14th International Symposium on
Software Reliability Engineering, page 34, Washington, DC,
USA, 2003. IEEE Computer Society.

[24] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequacy. ACM Comput. Surv., 29(4):366–427,
1997.

